Evening @ Skidaway program Tuesday May 12

May 11, 2015

eatskio3_postcardv2_front (2)

The spring Evening @ Skidaway program will be presented Tuesday, May 12, in the library auditorium at the UGA Skidaway Institute of Oceanography. Reception will begin at 6:30 pm. and the lecture at 7:15 pm. Admission is free. General public is welcome.

Evening @ Skidaway examines black gill in shrimp May 12

April 29, 2015
A Georgia shrimp with the evidence of Black Gill clearly visible.

A Georgia shrimp with the evidence of Black Gill clearly visible.

In recent years, Georgia shrimpers have been very concerned about black gill, a mysterious condition affecting the coastal shrimp population, and one many shrimpers believe may be largely responsible for reduced shrimp harvests. University of Georgia Skidaway Institute of Oceanography professor Marc Frischer is leading a research project involving scientists, regulators and shrimpers from three states in an effort to determine the cause, effects and possible solutions to the black gill problem.

Frischer will discuss his ongoing research into black gill in shrimp in an Evening @ Skidaway program on Tuesday, May 12. The program will be in the McGowan Library at the UGA Skidaway Institute, beginning with a reception at 6:30 p.m. and followed by the lecture at 7:15 p.m.

An “Evening @ Skidaway” is sponsored by the UGA Skidaway Institute of Oceanography and the Associates of Skidaway Institute. The free program is open to the public.

Note: This program was originally scheduled for  March 12, but had to be rescheduled due to an unexpected family emergency.

For additional information, call 912-598-2325.

Warming climate may release vast amounts of carbon from long-frozen Arctic soils

April 24, 2015

While climatologists are carefully watching carbon dioxide levels in the atmosphere, another group of scientists is exploring a massive storehouse of carbon that has the potential to significantly affect the climate change picture.

Aron Stubbins

Aron Stubbins

University of Georgia Skidaway Institute of Oceanography researcher Aron Stubbins is part of a team investigating how ancient carbon, locked away in Arctic permafrost for thousands of years, is now being transformed into carbon dioxide and released into the atmosphere. The results of the study were published in Geophysical Research Letters.

The Arctic contains a massive amount of carbon in the form of frozen soil—the remnants of plants and animals that died more than 20,000 years ago. Because this organic material was permanently frozen year-round, it did not undergo decomposition by bacteria the way organic material does in a warmer climate. Just like food in a home freezer, it has been locked away from the bacteria that would otherwise cause it to decay and be converted to carbon dioxide.

“However, if you allow your food to defrost, eventually bacteria will eat away at it, causing it to decompose and release carbon dioxide,” Stubbins said. “The same thing happens to permafrost when it thaws.”

Scientists estimate there is more than 10 times the amount of carbon in the Arctic soil than has been put into the atmosphere by burning fossil fuels since the start of the Industrial Revolution. To look at it another way, scientists estimate there is two and a half times more carbon locked away in the Arctic deep freezer than there is in the atmosphere today. Now, with a warming climate, that deep freezer is beginning to thaw and that long-frozen carbon is beginning to be released into the environment.

“The study we did was to look at what happens to that organic carbon when it is released,” Stubbins said. “Does it get converted to carbon dioxide or is it still going to be preserved in some other form?”

Stubbins and his colleagues conducted their fieldwork at Duvanni Yar in Siberia. There, the Kolyma River carves into a bank of permafrost, exposing the frozen organic material. This worked well for the scientists, as they were able to find streams that consisted of 100 percent thawed permafrost. The researchers measured the carbon concentration, how old the carbon was and what forms of carbon were present in the water. They bottled it with a sample of the local microbes. After two weeks, they measured the changes in the carbon concentration and composition and the amount of carbon dioxide that had been produced.

A bank of permafrost thaws near the Kolyma River in Siberia.

“We found that decomposition converted 60 percent of the carbon in the thawed permafrost to carbon dioxide in two weeks,” Stubbins said. “This shows the permafrost carbon is definitely in a form that can be used by the microbes.”

Lead author Robert Spencer of Florida State University added, “Interestingly, we also found that the unique composition of thawed permafrost carbon is what makes the material so attractive to microbes.”

The study also confirmed what the scientists had suspected: The carbon being used by the bacteria is at least 20,000 years old. This is significant because it means that carbon has not been a part of the global carbon cycle in the recent past.

“If you cut down a tree and burn it, you are simply returning the carbon in that tree to the atmosphere where the tree originally got it,” Stubbins said. “However, this is carbon that has been locked away in a deep-freeze storage for a long time.

“This is carbon that has been out of the active, natural system for tens of thousands of years. To reintroduce it into the contemporary system will have an effect.”

The carbon release has the potential to create what scientists call a positive feedback loop. This means as more carbon is released into the atmosphere, it would amplify climate warming. That, in turn, would cause more permafrost to thaw and release more carbon, causing the cycle to continue.

“Currently, this is not a process that shows up in future (Intergovernmental Panel on Climate Change) climate projections; in fact, permafrost is not even accounted for,” Spencer said.

“Moving forward, we need to find out how consistent our findings are and to work with a broader range of scientists to better predict how fast this process will happen,” Stubbins said.

In addition to Stubbins and Spencer, the research team included Paul Mann from Northumbria University, United Kingdom; Thorsten Dittmar from the University of Oldenburg, Germany; Timothy Eglinton and Cameron McIntyre from the Geological Institute, Zurich, Switzerland; Max Holmes from Woods Hole Research Center; and Nikita Zimov from the Far-Eastern Branch of the Russian Academy of Science.

Evening @ Skidaway examines black gill in shrimp

February 24, 2015

University of Georgia Skidaway Institute of Oceanography professor Marc Frischer will discuss his on-going research into black gill in shrimp in an Evening @ Skidaway program on March 12th. The program will be in the McGowan Library at the UGA Skidaway Institute, beginning with a reception at 6:30 p.m. to be followed by the lecture program at 7:15 p.m.

A Georgia shrimp with the evidence of Black Gill clearly visible.

A Georgia shrimp with the evidence of Black Gill clearly visible.

In recent years, Georgia shrimpers have been very concerned about black gill, a mysterious condition affecting the coastal shrimp population. While the condition does not affect the edibility of the shrimp, many shrimpers believe that black gill may be largely responsible for reduced shrimp harvests. Frischer is leading a research project involving scientists, regulators and shrimpers from three states in an effort to determine the cause, effects and possible solutions to the black gill problem.

An “Evening @ Skidaway” is sponsored by the UGA Skidaway Institute of Oceanography and the Associates of Skidaway Institute.

The free program is open to the public.

For additional information, call 912-598-2325.

UGA study finds high marine debris, need for standardized reporting along Georgia coast

February 3, 2015

Skidaway Island, Ga. – University of Georgia researchers are hoping to find a consistent way to record the marine debris—particularly pieces of plastic—crowding Georgia’s beaches as part of an effort to find a solution for the growing problem.

Marine debris has been washing up on Georgia beaches and uninhabited islands for years. Combatting the issue starts with figuring out how big it is, and a new two-part study from the UGA Skidaway Institute of Oceanography and Marine Extension published online in the Marine Pollution Bulletin finds that marine debris reporting can improve if it becomes standardized.

The problem right now is this: A volunteer group goes out and records the weight or volume of the marine debris collected. However, volunteers don’t often record the specific square feet measured or the contents of the debris. Due to a lack of report standardization, researchers often can’t compare the marine debris, especially plastic fragments, reported by different groups.

A sample of marine debris collected along the Georgia coast sits on a table at the UGA Skidaway Institute of Oceanography.

A sample of marine debris collected along the Georgia coast sits on a table at the UGA Skidaway Institute of Oceanography.

“We’ve seen plastic usage go up dramatically,” said study co-author Dodie Sanders, a marine educator and outreach coordinator for UGA Marine Extension, a unit of the Office of Public Service and Outreach. “It’s an important 21st century global issue. We need to learn more to better understand the issues of marine debris.”

The study’s lead author Richard F. Lee, professor emeritus with the UGA Skidaway Institute of Oceanography, agrees.

“Plastic debris is created on land and then it goes into rivers, flows into the ocean and washes up on land,” he said. “We’ve found that plastic debris ends up not only on populated beaches, but on inaccessible islands as well. We’ve found plastic everywhere on the coast.”

The first part of the study gathered debris from 20 sites along Georgia’s coast, including Tybee, Cumberland and Ossabaw islands. The debris was reported from volunteer organizations like Clean Coast, which hold monthly beach and marsh cleanups in Georgia.

Participants in a July 2014 teacher's workshop focusing on marine debris sift through the sands of Tybee Island in search of microplastic particles.

Participants in a July 2014 teacher’s workshop focusing on marine debris sift through the sands of Tybee Island in search of microplastic particles.

“The volunteer groups reported the weight of the debris, though we didn’t know the exact amount of plastic,” Lee said. “Based off the volunteer information we received, we did a follow-up study to more precisely measure the marine debris in a fixed location and period of time.”

The total collected debris ranged from 180 to 1,000 kilograms. The levels of plastic debris differed at each site over the course of the study, though plastic was consistently among the mix. Found plastic included plastic bottles, wrappers, food utensils and fragments of fishing gear.

Sanders spearheaded the second part of the study, where she and students collected plastic debris from Skidaway and Wassaw islands over a period of two years.

“While Dr. Lee did data analysis, I did some of the field work,” Sanders said. “We picked the two islands in the second part of the study because they were accessible sites where Marine Extension often takes students for marine education.”

For the fieldwork, Sanders and students visited the islands each month. They took inventory of what kinds of plastics were on specific areas of the coast.

“On about a monthly basis, I would take students to learn about debris and tally all the items on the islands,” Sanders said. “We took areas of 200 meters by 40 meters and recorded the items found. We also used GPS units to mark what areas we had done.”

The students, many of them in middle and high school, came from all over Georgia to assist. As part of Marine Extension, Sanders regularly teaches visiting students about marine life. When students volunteered to clean up, she tried to emphasize the issues surrounding debris.

“The bulk of the plastic comes from land,” Sanders said. “When people think of marine debris, they think of the ocean. I try to emphasize watershed concepts—what happens upstream ultimately gets downstream.”

“It can take years for plastic to degrade,” Lee said, adding, “80 percent of the plastic found at Wassaw turned out to be fragments. The fragments then spread and can have a number of environmental effects.”

Sanders says that since plastic debris is everywhere on the coast, it has to be addressed and reported efficiently to reduce its effects.

“There are proactive and reactive approaches to the issues of marine debris, and both are important,” she said. “We’ve been reactive so far by picking up debris. The proactive approach is our role in educating the public and researching the negative impacts of marine debris.”

The study was supported by the Georgia Department of Natural Resources Coastal Incentive Grant, NOAA Southeast Atlantic Marine Debris Initiative and the NOAA Marine Debris Program.

The full article on “The amount and accumulation rate of plastic debris on marshes and beaches on the Georgia coast” is available at www.sciencedirect.com/science/article/pii/S0025326X14008200#.

 

UGA Skidaway Institute scientists map Wassaw Sound

December 18, 2014

A research team from the University of Georgia Skidaway Institute of Oceanography has completed the first high-resolution, bathymetric (bottom-depth) survey of Wassaw Sound in Chatham County.

Led by Skidaway Institute scientist Clark Alexander, the team produced a detailed picture of the bottom of Wassaw Sound, the Wilmington River and other connected waterways. The yearlong project was developed in conjunction with the Georgia Department of Natural Resources.

This shows a wide view of the Wassaw Sound survey map. Shallow areas are shown in orange and yellow, deeper areas in green and blue.

This shows a wide view of the Wassaw Sound survey map. Shallow areas are shown in orange and yellow, deeper areas in green and blue.

The survey provides detailed information about the depth and character of the sound’s bottom. This information will be useful to boaters, but boating safety was not the primary aim of the project. The primary objective was to map bottom habitats for fisheries managers. DNR conducts fish surveys in Georgia sounds, but, according to Alexander, they have limited knowledge of what the bottom is like. “One of the products we developed is an extrapolated bottom character map,” Alexander said. “This describes what the bottom grain size is like throughout the sound. Is it coarse, or shelly or muddy? This is very important in terms of what kind of habitat there is for marine life.”

A second goal was to provide detailed bathymetric data to incorporate into computer models that predict storm surge flooding caused by hurricanes and other major storms. Agencies like the United States Army Corps of Engineers, the Federal Emergency Management Agency and the National Oceanographic and Atmospheric Administration use mathematical models to predict anticipated storm inundation and flooding for specific coastal areas. A key factor in an accurate modeling exercise is the bathymetry of the coastal waters.

“You need to know how the water will pile up, how it will be diverted and how it will be affected by the bottom morphology,” Alexander said. “Since we have a gently dipping coastal plain, storm inundation can reach far inland. It is important to get it as right as we can so the models will provide us with a better estimate of where storm inundation and flooding will occur.”

Funded by an $80,000 Coastal Incentive Grant from DNR, Alexander and his research team, consisting of Mike Robinson and Claudia Venherm, used a cutting-edge interferometric side-scan sonar system to collect bathymetry data. The sonar transmitter/receiver was attached to a pole and lowered into the water from Skidaway Institute’s 28-foot Research Vessel Jack Blanton. Unlike a conventional fishfinder, which uses a single pinger to measure depth under a boat, the Edgetech 4600 sonar array uses fan-shaped sonar beams to both determine water depth and bottom reflectivity, which identifies sediment type, rocky outcroppings and bedforms, in a swath across the boat’s direction of travel.

Skidaway Institute of Oceanography research coordinator Claudia Venherm logs survey activity on board the R/V Jack Blanton

Skidaway Institute of Oceanography research coordinator Claudia Venherm logs survey activity on board the R/V Jack Blanton

The actual process of surveying the sound involved long hours of slowly driving the boat back and forth on long parallel tracks. On each leg, the sonar produced a long, narrow strip indicating the depth and character of the sound bottom. Using high-resolution Global Positioning System data that pinpointed the boat’s exact location, the system assembled the digital strips of data into a complete picture of the survey area.

All the other sounds on the Georgia coast were mapped in 1933, but for some reason data from that time period for Wassaw Sound was unavailable. When the team began this project, they believed they were conducting the first survey of the sound. However, just as the researchers were finishing the project, NOAA released data from a 1994 single-beam survey that had been conducted in advance of the 1996 Olympic yachting races that were held in and near Wassaw Sound.

“This worked out very well for our project, because we are able to compare the differences between the two surveys conducted 20 years apart,” Alexander said. “We see areas that have accumulated sediment by more than 2 meters, and we also see areas that have eroded more than 2 meters since 1994. Channels have shifted and bars have grown or been destroyed.”

Because of advances in technology, the current survey is significantly richer in detail than the one conducted in 1994. “We can zoom down to a square 25 centimeters (less than a foot) on a side and know the bottom depth,” Alexander said.

The survey produced a number of findings that were surprising. The intersection of Turner Creek and the Wilmington River is a deep, busy waterway. Although most of the area is deep, the survey revealed several pinnacles sticking up 20 feet off the bottom. “They are round and somewhat flat, almost like underwater mesas,” Alexander said.

The researchers determined that the deepest place mapped in the study area was a very steep-sided hole, 23 meters deep, in the Half Moon River where it is joined by a smaller tidal creek. They also found several sunken barges and other vessels.

The survey data set is available to the public on the Georgia Coastal Hazards Portal at http://gchp.skio.usg.edu/. Alexander warns that while boaters should find the survey interesting, the information is intended for habitat research and storm surge modeling, not for navigation. “Because the bottom of Wassaw Sound is always shifting and changing, as our survey showed, don’t rely on the data for safe navigation,” he cautioned.

Alexander has already received a grant for an additional survey, this time of Ossabaw Sound, the next sound south of Wassaw Sound. He expects work to begin on that survey in early 2015.

The Skidaway Institute of Oceanography is a research unit of the University of Georgia located on Skidaway Island near Savannah. The mission of the institute is to provide the state of Georgia with a nationally and internationally recognized center of excellence in marine science through research and education.

Skidaway Institute scientist shares Gulf oil spill research grant

December 17, 2014

University of Georgia Skidaway Institute of Oceanography scientist Catherine Edwards is part of a research team that has received an $18.8 million grant to continue studies of natural oil seeps and track the impacts of the BP/Deepwater Horizon oil spill in the Gulf of Mexico ecosystem.

Known as ECOGIG-2 or “Ecosystem Impacts of Oil and Gas Inputs to the Gulf,” the project is a collaborative, multi-institutional effort involving biological, chemical, geological and chemical oceanographers led by the University of Georgia’s Samantha Joye. The research team has worked in the Gulf since the weeks following the 2010 Macondo well blowout.

The three-year, $18.8 million ECOGIG-2 program was funded by the Gulf of Mexico Research Initiative, or GoMRI.

“Our goal is to better understand the processes that have affected the oil spill since 2010,” Edwards said. “How the droplets were dispersed? Where the oil went? How it was taken up by small microbes and also the effects on animals further up the food chain?”

Skidaway Institute scientist Catherine Edwards adjusts a glider’s buoyancy with graduate students Sungjin Cho and Dongsik Chan.

Skidaway Institute scientist Catherine Edwards adjusts a glider’s buoyancy with graduate students Sungjin Cho and Dongsik Chan.

Edwards’ role in the project is to use autonomous underwater vehicles, also called “gliders,” to collect data on conditions around the spill site. Equipped with sensors to measure characteristics such as depth, water temperature, salinity and density, the gliders can cruise the submarine environment for weeks at a time, collecting data and transmitting it back to a ship or a shore station.

“We want to understand the ocean currents—how they change over time and how they change in depth,” Edwards said. “Surface measurements give us a two-dimensional picture of the ocean. Glider data in the vertical provides more valuable information for more fully understanding ocean currents and how they arise.”

The gliders will operate both in conjunction with shipboard instruments and also independently. One advantage of using the gliders is they can operate during storms and rough weather, when it may not be possible to use ships. Edwards said shipboard work doesn’t always give a full picture of ocean dynamics simply by the fact that they can only go out when the weather is reasonably clear.

When working in conjunction with research ships, the gliders can provide additional observations, significantly improving the quality of the data set. The gliders also report dissolved oxygen concentrations and optical measurements of chlorophyll and organic matter, and may also be used as a test vehicle for new instruments in development.

Edwards will use “GENIoS,” a new software package, to help navigate the gliders. GENIoS uses high-resolution forecast models of wind and ocean currents, along with information from the glider itself, to calculate the optimal path for the gliders. This will improve the quality of the scientific data collected.

GENIoS is a collaboration among Edwards, Fumin Zhang from the Georgia Institute of Technology and their two Georgia Tech Ph.D. students, Dongsik Chang and Sungjin Cho. GENIos has been tested for more than 210 glider-days on the continental shelf off Georgia and South Carolina. This experiment will be its first test in the Gulf of Mexico.

Edwards also hopes to use this project to test the gliders as platforms for new, experimental sensors developed by other members of the ECOGIG-2 team.

Others involved in ECOGIG-2 include UGA marine sciences faculty Christof Meile, Renato Castelao and Catherine Edwards as well as Annalisa Bracco and Joe Montoya of Georgia Tech.

For additional information, contact Catherine Edwards at (912) 598-2471 or catherine.edwards@skio.uga.edu.

Scientists use underwater robots to excite students about science

December 4, 2014

Educators and scientists from the University of Georgia Skidaway Institute of Oceanography and the UGA Marine Extension Service have developed a novel education program based on ocean robots to spark an interest in science and mathematics in middle and high school students. The team invented a board game that lets students explore different strategies for navigating autonomous underwater vehicles, called AUVs or gliders, through the ocean.

The program, “Choose Your Own Adventure,” capitalizes on Skidaway Institute’s expertise with AUVs and MAREX’s extensive history of marine education. Skidaway Institute scientist and UGA faculty member Catherine Edwards and MAREX faculty members Mary Sweeney-Reeves and Mare Timmons are directing the one-year project, which demonstrates the decision-making process in “driving” gliders.

Gliders are untethered, torpedo-shaped vehicles that are launched into the ocean to collect data as they move through the water. They glide up and down by adjusting their buoyancy and pitch. Gliders can remain on a mission for weeks at a time, equipped with sensors and recorders to collect observations of temperature, salinity, dissolved oxygen, and other biological and physical conditions, even under the roughest weather. Every four to six hours over their mission, they surface and connect to servers on land to report their position and vehicle and mission information. They also can send data back to shore or receive new instructions from pilots anywhere in the world. Skidaway Institute’s glider, nicknamed “Modena,” has been used in several recent projects, including “Gliderpalooza,” a simultaneous, cooperative launch of dozens of AUVs from different institutions in 2013 and again in 2014.

OLYMPUS DIGITAL CAMERA

Skidaway Institute scientist Catherine Edwards and MAREX faculty member Mare Timmons (far right) cheer on a small child who tried her hand at the “Choose Your Own Adventure” game at Skidaway Marine Science Day on Oct. 25.

“Gliders are education-friendly, but the existing outreach activities are stale,” Edwards said. “We are developing the next generation of AUV outreach programs by combining cutting-edge, interdisciplinary research with educational activities and strong STEM components.”

The AUV activity/game is a part of an outreach program targeting mostly middle school students and it highlights the problem of working with the strong tides that are characteristic of the Georgia coast. A big issue in operating gliders is developing a guidance and navigation system that will function well in strong currents. The fast-moving Gulf Stream, located roughly 100 miles off the Georgia beaches, also introduces navigation problems.

“Although the AUVs have Global Positioning Systems and can be programmed to travel a set course, tidal and Gulf Stream currents can exceed the glider’s forward speed, which can take the instrument off course and keep us from collecting data where we need it,” Edwards said. “By estimating forecasts of these currents in advance, our software system can predict the best possible route for the glider to take, which helps collect the best possible data.”

On the education side, the predictability of tides makes the proposed program highly intuitive and education-friendly. The activity/game incorporates student role-playing as an AUV maneuvers through a playing field of vector currents on a game board. The student decides how many of his or her moves to spend fighting the current and how many to spend moving toward the finish line. Successful arrival at the destination depends on how the individual pilot responds to currents en route.

Activities depend on grade level, so middle school students have different objectives than those in high school. However, all the activities address the direction and speed the AUV travels to a destination. The AUV direction and speed will depend on the sea state, such as strong currents, storms or high winds.

Teachers April Meeks and Ben Wells from Oglethorpe Academy have offered their classes as a test-bed for the game. The two have worked closely with the team to integrate classroom concepts into the game and guide discussions about strategy based on the math. Since the activities are multidisciplinary, the teachers’ expertise in building a math curriculum has been valuable as the team integrates concepts of marine science, math and engineering into classroom activities. Rolling giant dice is a fun activity that attracts the students—everyone wants to roll the dice. So far, the feedback has been very positive.

“The students really seem to love it,” Sweeney-Reeves said. “More importantly, they are making the connection between the game and science, and learning.

“It took a period of time for some students to understand the concept but after starting the second round, they had the game/activity figured out. The excitement peaked at Oglethorpe Middle School when Mr. Wells played against the students and we really saw the competition heat up.”

Edwards added, “We knew we had a hit when we saw students jump up in celebration when the currents were favorable and pout when they were blown off course.”

The team demonstrated the game at the campus’s annual open house, Skidaway Marine Science Day, in late October, with a life-sized version of the board game with giant dice. Over 120 students played the game, racing against each other as they explored different strategies to win in three- to five-person heats. Sweeney-Reeves and Timmons also rolled out the game for educators at the Georgia Association of Marine Educators annual conference on Tybee Island earlier this month.

“The conference attendees were excited to use the giant dice to roll and hedge their bets on where they could navigate to the finish line,” Timmons said. “This is much like how the AUV is programmed to reach its sampling assignment in the ocean.”

Timmons said the teachers at the conference laughed as they saw the big game board spread out on the sidewalk. “Towards the end as teachers were close to the finish line they shouted, ‘right!’, mentally trying to encourage the roll of the die to their advantage.”

Timmons and Sweeney-Reeves think the game has real-life applications and hope the students can use the concepts they learn in the classroom for swimming in our own local waters. The next step is to expand the classroom demonstrations to Coastal Middle School in Chatham County and Richmond Hill Middle School.

The activities allow students to develop analytical skills in a program that will be compliant with Next Generation Science Standards for the 21st Century in the common core state curriculum.

“We hope this one-year program will serve as a springboard for future funding and continued joint outreach by Skidaway Institute and Marine Extension,” Edwards said. “We’d love to develop computer games and apps for tablets and mobile phones that let students fly gliders through even more realistic scenarios based on the measurements we collect in real time.”

The program is being funded through a joint grant from Skidaway Institute, UGA Office of Public Service and Outreach, and the UGA President’s Venture Fund. The UGA President’s Venture Fund is intended to assist with significant funding challenges or opportunities. The fund also supports small programs and projects in amounts typically ranging from $500 to $5,000.

The Skidaway Institute of Oceanography is a research unit of the University of Georgia located on Skidaway Island. Its mission is to provide a nationally and internationally recognized center of excellence in marine science through research and education. The UGA Marine Extension Service is a unit of the Office of Public Service and Outreach.

For additional information, contact Catherine Edwards at 912-598-2471 or catherine.edwards@skio.uga.edu; Mary Sweeney-Reeves at 912-598-2350 or msweeney@uga.edu; or Maryellen Timmons at 912-598-2353 or mare@uga.edu.

Evening @ Skidaway features underwater robots

November 10, 2014

Exploring the ocean with underwater robots will be the focus of an Evening @ Skidaway at the UGA Skidaway Institute of Oceanography on Thursday, November 13. The program will held in the McGowan Library at the University of Georgia Skidaway Institute of Oceanography, beginning with a reception at 6:30 p.m. to be followed by the lecture program at 7:15 p.m.

Catherine Edwards (center) demonstrates an underwater robot (AUV) to Mary Sweeney-Reeves (left) and Mare Timmons, both from the UGA Marine Extension Service.

Catherine Edwards (center) demonstrates an underwater robot (AUV) to Mary Sweeney-Reeves (left) and Mare Timmons, both from the UGA Marine Extension Service.

UGA Skidaway Institute professor Catherine Edwards will discuss her adventures and misadventures in the exciting field of underwater robots. Shaped like a six-foot long torpedo with stubby plastic wings, these autonomous underwater vehicles, or gliders, can be packed with sensors and are set lose to cruise the submarine environment for weeks on end. They produce amazing results, and sometimes face unusual and unexpected perils.

An “Evening @ Skidaway” is sponsored by the Skidaway Institute of Oceanography and the Associates of Skidaway Institute.

The program is open to the public, and admission is free.

For additional information, call (912) 598-2325.

26 Hours on the Marsh — November edition

November 6, 2014

Associate Professor Aron Stubbins led a 26 hour sampling program on the marsh. The team, including Thais Bittar, Robert Spencer, Zachary Tait, Megan Thompson, Alison Buchan, and Drew Steen, spent the day and night monitoring a day in the life of the microbes, gases and organic carbon molecules that form the biogeochemical milieu of the marsh. This work is part of two National Science Foundation projects involving professors and students from Skidaway Institute of Oceanography, University of Tennessee – Knoxville, and Florida State University.

Cutting edge techniques are being employed to watch the marsh creek in real time over 18 months. The sampling event shown in the time lapse video is the fall rendition of four seasonal sampling events that are recording the daily life of the creek. Manual sampling is required so that we can collect live bacteria and gas (such as carbon dioxide) samples that need to be processed by hand, immediately upon collection. The bacteria collected are being genetically characterized, so we know who was in the creek at different times of day (DNA). Then we will also determine which genes were active (RNA). This tells us what the bacteria present in the marsh were doing throughout the day.

We also record the changes in dissolved organic carbon throughout the day. Dissolved organic carbon is a major part of the global carbon cycle and so understanding its cycling is important with respect to understanding how natural carbon cycling responds to and plays a role in climate change. For the microbes in the creek, the dissolved organic carbon (DOC) is food. So by looking at which bacteria are there (DNA), what they are doing (RNA), and what types of food is present (DOC), we hope to gain a more complete understanding of the miniature world within every drop of creek water. The daily routines of these tiny bacteria and dissolved organic molecules shape the marsh ecosystem and play important roles in determining the current and future climate of our planet.


Follow

Get every new post delivered to your Inbox.

Join 49 other followers