Archive for the ‘marine biology’ Category

UGA Skidaway Institute scientists study microbial chemical warfare

April 18, 2017

In the battlefield of the microbial ocean, scientists have known for some time that certain bacteria can exude chemicals that kill single-cell marine plants, known as phytoplankton. However, the identification of these chemical compounds and the reason why bacteria are producing these lethal compounds has been challenging.

Now, University of Georgia Skidaway Institute of Oceanography scientist Elizabeth Harvey is leading a team of researchers that has received a $904,200 grant from the National Science Foundation to fund a three-year study into the mechanisms that drive bacteria-phytoplankton dynamics.

Researcher Elizabeth Harvey examines a part of her phytoplankton collection.

Understanding these dynamics is important, as phytoplankton are essential contributors to all marine life. Phytoplankton form the base of the marine food chain, and, as plants, produce approximately half of the world’s oxygen.

“Bacteria that interact with phytoplankton and cause their mortality could potentially play a large role in influencing the abundance and distribution of phytoplankton in the world ocean,” Harvey said. “We are interested in understanding this process so we can better predict fisheries health and the general health of the ocean.”

This project is a continuation of research conducted by Harvey and co-team leader Kristen Whalen of Haverford College when they were post-doctoral fellows at Woods Hole Oceanographic Institution. They wanted to understand how one particular bacteria species impacted phytoplankton.

A microscopic view of a population of phytoplankton

“We added the bacteria to the phytoplankton and the phytoplankton died,” Harvey said. “So we became very interested in finding the mechanism that caused that mortality.”

They identified a particular compound, 2-heptyl-4-quinlone or HHQ, that was killing the phytoplankton. HHQ is well known in the medical field where it is associated with a bacterium that can cause lung infections, but it had not been seen before in the ocean. The team will conduct laboratory experiments to determine the environmental factors driving HHQ production in marine bacteria; establish a mechanism of how the chemical kills phytoplankton; and use field-based experiments to understand how HHQ influences the population dynamics of bacteria and phytoplankton.

“This project has the potential to significantly change our understanding of how bacteria and phytoplankton chemically communicate in the ocean.” Harvey said.
The project will also include a strong education component. The researchers will recruit undergraduate students, with an effort to target recruitment of traditionally under-represented groups, to participate in an intense summer learning experience with research, field-based exercises and some classroom work.

“The idea is for the students to return to their home institutions at the end of the summer, but to continue to work with us on this project,” Harvey said. “This will be a unique opportunity to offer students cross disciplinary training in ecology, chemistry, microbiology, physiology and oceanography.”

In addition to Harvey and Whalen, the research team includes David Rowley of the University of Rhode Island.

NOTE:  A complementary video with an interview with Dr. Harvey is available at http://www.skio.uga.edu/news/videos/

 

Diving Deep Into Phytoplankton: How Tiny Ocean Organisms Help You Breathe — An Interview With GPB

March 21, 2017

You can hear Dr. Elizabeth Harvey’s interview with Georgia Public Broadcasting here.

“You may have learned in school that photosynthesis is how plants use sunlight to turn water into hydrogen and carbon dioxide, its food, and oxygen, which it releases into the air for all of us to breathe. But photosynthesis doesn’t just happen on land – it happens in the ocean.

Phytoplankton are tiny, single-celled algae basically, that live in the ocean,” explained Liz Harvey, Assistant Professor of Marine Science at University of Georgia’s Skidaway Institute of Oceanography, which is located on Skidaway Island. “They conduct photosynthesis just like land plants, trees and grass do, and they are prolific. They grow everywhere in the ocean.”

“There’s lots of different types of phytoplankton, they can do lots of different things,” Harvey continued. “But I think if you take one thing home, it’s that phytoplankton are important  as they produce about fifty percent of the oxygen that you breathe. Land plants produce about half and then phytoplankton produce about half. These tiny little microscopic organisms are actually very, very important for helping to sustain life on earth. “

Producing half of earth’s supply of oxygen is only half of this organism’s job.

“Phytoplankton are eaten quite regularly and serve as food for other small organisms, which are then eaten by larger organisms which eventually lead up to fish, whales and sharks and all the really cool things that we think about when we think about the ocean,” Harvey said. “Although I would think phytoplankton are really cool too! So they serve a very important purpose to sustain the health and viability of fisheries. That’s another reason why we’re so concerned about what they’re doing, where they are, what types of phytoplankton are around – because they serve this purpose in supporting the larger fisheries as a whole.”

Tiny but voracious marine organism studied — video

February 8, 2017

Tiny but all-consuming marine organism focus of UGA Skidaway Institute study

February 8, 2017
Marc Frischer

Marc Frischer

Doliolids are tiny marine animals rarely seen by humans outside a research setting, yet they are key players in the marine ecosystem, particularly in the ocean’s highly productive tropical and subtropical continental margins, such as Georgia’s continental shelf. University of Georgia Skidaway Institute of Oceanography scientist Marc Frischer is leading a team of researchers investigating doliolids’ role as a predator in the marine food web.

Doliolids are small, barrel-shaped gelatinous organisms that can grow as large as ten millimeters, or about four tenths of an inch. They are not always present in large numbers, but when they bloom they can restructure the marine food web, consuming virtually all the algae and much of the smaller zooplankton.

A doliolid with a cluster of juvenile doliolids on its tail. Actual size is approximately three millimeters, or one eighth inch.

A doliolid with a cluster of juvenile doliolids on its tail. Actual size is approximately three millimeters, or one eighth inch.

“The goal of this particular study is to find out what the doliolids are eating quantitatively,” Frischer said. “This is so we can understand where they fit in the food web.”

Scientists know from laboratory experiments what doliolids are capable of eating, but they don’t know what they actually do eat in the wild. They are capable of eating organisms as small as bacteria all the way up to much larger organisms.

“What they are eating and how much are they eating from the smorgasbord that is available to them, that is the question,” Frischer said. “We are investigating how much of those different prey types they are really eating out there across the seasons.”

The project involves intensive field work, including 54 days of ship time on board UGA Skidaway Institute’s Research Vessel Savannah. During the cruises they conduct trawls using special plankton nets to collect the doliolids. They also collect water samples to understand the conditions where the doliolids thrive.

Graduate students Lauren Lamboley and Nick Castellane deploy a plankton net from the Research Vessel Savannah.

Graduate students Lauren Lamboley and Nick Castellane deploy a plankton net from the Research Vessel Savannah.

“We take the doliolids and the water samples back to the laboratory, and that is where the magic begins,” Tina Walters, Frischer’s laboratory manager said.

Because the animals are gelatinous and very delicate, the researchers cannot use classical microscopic techniques to dissect the animals and analyze their gut content. Instead they extract DNA from the animals’ gut and use sequence-based information to determine what the doliolid ate.

“We go through a process called quantitative PCR,” Walters said. “So even though we can’t see the prey in a doliolid’s gut, because the prey have unique DNA sequences, we can identify and quantify them using a molecular approach.”

The three-year project is funded by a $725,000 grant from the National Science Foundation and will run until February 2018. Frischer’s collaborator on the project is Deidre Gibson from Hampton University. Gibson received her Ph.D. from the University of Georgia in 2000, and did much of her graduate research at Skidaway Institute with Professor Gustav Paffenhöfer.  In addition to Walters, Savannah State University graduate student Lauren Lamboley is part of the team, along with a number of students at Hampton University. Several undergraduate research interns have also participated in the project, gaining hands-on research experience. Frischer is also working with the Institute for Interdisciplinary STEM Education at Georgia Southern University to engage K-12 teachers by inviting them to participate in the research cruises.

Scientists track microplastic pollution on the Georgia coast

January 31, 2017

In recent years, the public has become attuned to the problem of trash in the ocean, especially plastic, as images of the Great Pacific Garbage Patch have spread through media and the Internet. Now, University of Georgia Skidaway Institute of Oceanography professor Jay Brandes is leading a team investigating another issue closer to home on the Georgia coast: microplastics.

Jay Brandes

Jay Brandes

These are tiny pieces of plastic—smaller than  five millimeters, or about a fifth of an inch—that have either been manufactured small or have broken down from larger pieces. They can be found in our beaches, water and in the digestive systems of aquatic wildlife.

“Five millimeters is still something you can see with the naked eye, but if you are out at the beach you aren’t going to pick up on it easily,” Brandes said. “So we say anything smaller than 5 millimeters is considered a microplastic.”

A few pieces of microplastic collected from the Georgia coast.

A few pieces of microplastic collected from the Georgia coast.

 

Funded by Georgia Sea Grant, Brandes and UGA Marine Extension and Georgia Sea Grant educator Dodie Sanders are in the first year of a two-year study to ascertain the extent of microplastic pollution in Georga’s coastal waters.

“Right now we are just trying to get an idea if there is a problem, and if there is, how prevalent it is,” Brandes said.

Microplastics come from several sources. Beginning in 1972, cosmetics manufacturers started adding plastic microbeads to exfoliating body washes and facial scrubs, which often pass freely through water treatment plants. When scientists reported finding these microbeads in rivers, lakes and oceans, it prompted a worldwide discussion on the issue. In 2015, Congress enacted legislation requiring the cosmetics industry to remove microbeads from rinse-off cosmetics by July of this year.

The sun also contributes to the production of microplastics. Plastic exposed to sunlight eventually fades, becomes brittle and breaks down into smaller pieces.

“All of us have probably seen a Styrofoam cup break down and the little beads come out,” Brandes said.  “So there is the physical breakdown of the plastics into smaller and smaller pieces as they grind against each other and sand grains.”

To assess the extent of microplastic pollution on the Georgia coast, the research team makes use of the regular trawls conducted by UGA Marine Education and Aquarium staff. They collect the fish, shrimp, squid and other animals captured in the trawl and take them back to a laboratory where they will dissect them and analyze the contents of their gut.

Students from Pierce County Middle School sort through the results of a trawl as part of an education program at the UGA Marine Education Center and Aquarium.

Students from Pierce County Middle School sort through the results of a trawl as part of an education program at the UGA Marine Education Center and Aquarium.

“The first thing we have to do is to subject the gut contents to some extremely harsh chemicals to destroy the flesh and leave us mostly with the plastics,” Brandes said. “When dissecting even a small fish, it’s like looking for a needle in a haystack if you don’t get rid of all the other stuff.”

What is left is examined under a microscope and the plastic pieces identified and counted. The researchers have already found some surprises. Everywhere they look, whether it is beach sand or the contents of a fish’s stomach, they are seeing microfibers, extremely fine synthetic fiber used to create textiles.

According to Brandes, microfibers are pervasive—so much so that when the researchers take samples to the laboratory they have to take special measures to prevent contamination of their samples from microfibers floating in the air. It is not clear, however, if the microfibers are causing any harm to the marine organisms that ingest them.

“We are not finding fish with their stomachs packed with microfibers,” Brandes said. “It’s hard to tell if they are causing any real problems.”

The project also has an educational component. Brandes has taught workshops in which he takes  groups of K-12 teachers to Tybee Island to collect sand and return it to the laboratory for microscopic analysis. He says the teachers are usually shocked with what they see.

“Hey, you thought that sand was clean, and from a tourist standpoint it is,” he said. “But there is still stuff in there and then you start talking about where it came from and what kinds of effects it may have.”

The project is expected to be completed and the results published by early 2018.

New imaging lab in the news

January 23, 2017

There was a nice article in Saturday’s Savannah Morning News regarding a new imaging lab at UGA Skidaway Institute.

http://savannahnow.com/news/2017-01-20/automated-microscopes-aid-crucial-ocean-work-skidaway

WSAV airs story on UGA Skidaway Institute black gill research

December 16, 2016

Savannah NBC affiliate, WSAV-TV aired an update on Dr. Marc Frischer’s ongoing research into the problem of black gill in Georgia shrimp.

Research reveals black gill kills shrimp

UGA Skidaway Institute develops cutting-edge microbial imaging laboratory

December 7, 2016

A team of researchers from the University of Georgia Skidaway Institute of Oceanography has received a $226,557 grant from the National Science Foundation to acquire state-of-the-art imaging equipment to investigate microorganisms from the tiniest viruses to larger zooplankton. The equipment will be housed in UGA Skidaway Institute’s new Laboratory for Imaging Microbial Ecology, or LIME.

Researcher Elizabeth Harvey leads the research team that also includes UGA Skidaway Institute scientists Julia Diaz, Marc Frischer, James Nelson and James Sanders.

The equipment will improve Skidaway Institute’s capability to conduct field and laboratory experiments by automating many viewing methods.

“Anyone who uses a microscope will tell you that it is both tedious and time consuming,” Harvey said. “This equipment will allow us to enumerate and analyze microbes and other planktonic organisms much faster, and will allow us to do more large-scale projects than we could in the past.”

UGA Skidaway Institute researchers Tina Walters, Marc Frischer and Karrie Bulski practice running zooplankton samples on the FlowCam, a new instrument that is part of LIME.

UGA Skidaway Institute researchers Tina Walters, Marc Frischer and Karrie Bulski practice running zooplankton samples on the FlowCam, a new instrument that is part of LIME.

Much of the equipment will also have imaging capability so researchers will be able to do more detailed measurements on the size and shape of the tiny organisms and how that might relate to the health of an ecosystem.

Marine microbes are an essential component of all marine ecosystems and they play central roles in mediating biogeochemical cycling and food web structure.

“They are the things that drive all other processes in the ocean,” Harvey said. “They play a really important role in the way nutrients, oxygen and carbon are cycled through the ocean. We care a lot about those processes because they impact our climate, fisheries and the ocean’s overall health.”

A sampling of phytoplankton   imaged by the LIME's FlowCam.

A sampling of phytoplankton imaged by the LIME’s FlowCam.

The benefits of LIME will be shared beyond Skidaway Institute’s science team. Harvey envisions it as a regional center for microbial imaging, available to any other researchers who need the capability.

“Anyone is welcome to come here and get trained to use them,” she said. “They just need to contact me and we can make arrangements.”

Some of the equipment is already in place, while other pieces have not been delivered. Harvey anticipates all the equipment being functional by mid-2017.

Fall black gill cruise rolls out new research

November 10, 2016

The University of Georgia Skidaway Institute of Oceanography entered the fourth year of its black gill research program with a daylong cruise on board the Research Vessel Savannah and the introduction of a new smartphone app that will allow shrimpers to help scientists collect data on the problem.

Led by UGA scientists Marc Frischer, Richard Lee, Kyle Johnsen and Jeb Byers, the black gill study is being conducted in partnership with UGA Marine Extension and Georgia Sea Grant, and is funded by Georgia Sea Grant.

Black gill is a condition Georgia shrimpers first noticed in the mid-1990s. Many shrimpers have blamed black gill for poor shrimp harvests in recent years, but until Frischer began his study, almost nothing was known about the condition. Now the researchers know black gill is caused by a parasite—a single-cell animal called a ciliate—although the exact type of ciliate is still a mystery.

The October cruise had three goals. The first was simply to collect data and live shrimp for additional experiments.

 

“We were able to collect enough live shrimp in good shape to set up our next experiment,” Frischer said. “We are planning on running another direct mortality study to investigate the relationship between temperature and black gill mortality. This time, instead of comparing ambient temperature to cooler temperatures as we did last spring and summer, we will investigate the effects of warming.”

Researchers Marc Frischer (UGA Skidaway Institute), Brian Fluech and Lisa Gentit (both UGA Marine Extension and Georgia Sea Grant) examine shrimp for signs of black gill.

Researchers Marc Frischer (UGA Skidaway Institute), Brian Fluech and Lisa Gentit (both UGA Marine Extension and Georgia Sea Grant) examine shrimp for signs of black gill.

If his hypothesis is correct, Frischer believes researchers would expect that raising fall water temperatures to warmer summer levels in a laboratory setting will induce black gill associated mortality in the shrimp caught in the fall.

Those studies will be compared to those that are being conducted in South Carolina in a slightly different manner. Frischer expects the results should be similar.

“However, as it goes with research, we are expecting surprises,” Frischer continued. “We also collected a good set of samples that will contribute to our understanding of the distribution and impact of black gill.”

A second goal was to introduce and begin field testing a new smartphone application developed by Johnsen. The app is intended to be a tool that will allow shrimp boat captains and recreational shrimpers to assist the researchers by filling some of the holes in the data by documenting the extent of black gill throughout the shrimp season. The Georgia Department of Natural Resources conducts surveys of the shrimp population up and down the coast throughout the year. However, those surveys do not provide the researchers with the rich data set they need to really get an accurate assessment of the black gill problem.

A sample screen shot of the black gill smartphone application.

A sample screen shot of the black gill smartphone application.

“Instead of having just one boat surveying the prevalence of black gill, imagine if we had a dozen, or 50 or a hundred boats all working with us,” Frischer said. “That’s the idea behind this app.”

The fishermen will use the app to document their trawls and report their data to a central database. Using GPS and the camera on their smartphone, they will record the location and images of the shrimp catch, allowing the researchers to see what the shrimpers see. If repeated by many shrimpers throughout the shrimping season, the information would give scientists a much more detailed picture of the prevalence and distribution of black gill.

“The app is complete and available on the app store, but we are still in the testing stages,” Johnsen said. “We want to make sure that it will be robust and as easy to use on a ship as possible before widely deploying it.”

Recruiting, training and coordinating the shrimpers will be the responsibility of UGA Marine Extension and Georgia Sea Grant.

“I think it should be entirely possible to at least have a small group of captains comfortable and ready to start using it when the 2017 season begins,” Frischer said.

Johnsen is excited about the app for what it can provide to the shrimping and research community, but also the implications it has for using apps to involve communities in general.

“There is still work to be done to improve the usability of these systems,” he said. “But I’m confident that we are going to see an increasing number of these ‘citizen science’ applications going forward.”

The final aim of the cruise was to bring together diverse stakeholders, including fishery managers, shrimpers and scientists, to spend the day together and share ideas.

“This was a good venue for promoting cross-talk among the stakeholder groups,” Frischer said. “I had many good conversations and appreciated the opportunity to provide a few more research updates.”

Georgia DNR's Pat Geer sorts through the marine life caught in a trawl net.

Georgia DNR’s Pat Geer sorts through the marine life caught in a trawl net.

Frischer says he thinks the communication and cooperation among the various stakeholder groups has improved dramatically since the beginning of the study. He recalled that when the study began in 2013, tensions were high. Shrimpers were angry and demanded that something be done to address the problem of black gill. Meanwhile, fishery managers were unclear if black gill was even causing a problem and frustrated that no one could provide them any reliable scientific advice. The research community had not been engaged and given the resources to pursue valid investigations.

“In 2016, we still have black gill. The fishery is still in trouble, but it does feel like we are at least understanding a bit more about the issue,” Frischer said. “Most importantly, it is clear that all of us are now working together.

“My feeling is that the opportunity for us to spend a day like that together helps promote understanding, communication and trust among the shrimpers, managers and researchers.”

3rd annual black gill cruise

October 24, 2016

This year’s black gill research cruise was held on Thursday, October 19. This is the third year UGA Skidaway Institute scientist Marc Frischer has hosted this cruise, designed to both gather data for his ongoing research, but also to bring various stakeholders together on a common cause. We had beautiful weather and a greata cruise.

Chief Scientist Marc Frischer welcomes the science party aboard the cruise.

Chief Scientist Marc Frischer welcomes the science party aboard the cruise.

bg-cruise-oct-16-web-003 bg-cruise-oct-16-web-004

Launching the trawl net for the first 15-minute drag.

Launching the trawl net for the first 15-minute drag.

OLYMPUS DIGITAL CAMERA

Sorting the shrimp from the by-catch.

Sorting the shrimp from the by-catch.

OLYMPUS DIGITAL CAMERA

Georgia DNR marine fisheries manager Pat Geer.

OLYMPUS DIGITAL CAMERA

Savannah State grad student Ashleigh Price keeping some of the catch alive for future experiments. .

Savannah State grad student Ashleigh Price keeping some of the catch alive for future experiments. .

OLYMPUS DIGITAL CAMERA

Researchers field testing a new app for tracking black gill.

Researchers field testing a new app for tracking black gill.

OLYMPUS DIGITAL CAMERA