Posts Tagged ‘arctic’

VIDEO – The climate change issue you probably haven’t heard about

July 6, 2016

The soil in the Arctic holds a massive store of carbon. These remnants of plants and animals that lived tens of thousands of years ago have been locked in permafost, soil that is always frozen…until now.

UGA Skidaway Institute of Oceanography scientist Aron Stubbins is part of a team that travelled to Siberia to discover what happens to that carbon when the permafrost thaws.

 

Advertisements

Skidaway Institute Arctic carbon research gets additional exposure

January 27, 2016

The Website Environmental Monitor published a good article on some of the work Skidaway Institute scientist Aron Stubbins has been conducting on carbon in black carbon in the Arctic. OLYMPUS DIGITAL CAMERA

http://www.fondriest.com/news/arctic-ocean-biochar-could-increase-with-global-warming.htm

Climate change likely to increase black carbon input to the Arctic Ocean

November 30, 2015

University of Georgia Skidaway Institute of Oceanography scientist Aron Stubbins led a team of researchers to determine the levels of black carbon in Arctic rivers and found that the input of black carbon to the Arctic Ocean is likely to increase with global warming. The results of their study were recently published in the journal Frontiers in Earth Science.

Black carbon, or biochar, is formed when vegetation and other organic matter burns. Today black carbon is a massive store of carbon in global soils, where it is thought to be very stable — so stable, that researchers have previously suggested that adding black carbon to soils might be a good way to lock away carbon dioxide and reduce climate change. This new research reveals that the black carbon stored in Arctic soils is being exported to the oceans.

Arctic rivers are the major way black carbon is transported to the ocean.

Arctic rivers are the major way black carbon is transported to the ocean.

The Arctic is warming faster than other regions of the planet due to climate change. The scientists report that, as the planet warms, the amount of black carbon transported to the Arctic Ocean will likely increase. Once dissolved in the ocean and exposed to sunlight, black carbon may be rapidly converted back to the greenhouse gas carbon dioxide.

In ongoing work at UGA and partner universities, Stubbins and his colleagues are trying to determine just how much black carbon will be exported to the Arctic Ocean as the Arctic continues to warm, and once it reaches the oceans, what percentage will reach the atmosphere as carbon dioxide.

The article is titled “Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers.” In addition to Stubbins, the co-authors include Robert Spencer from Florida State University; Jutta Niggemann and Thorsten Dittmar from the University of Oldenburg, Germany; Paul Mann from Northumbria University; Max R. Holmes from Woods Hole Research Center; and James McClelland from University of Texas Marine Science Institute.

The entire article can be viewed online at: http://journal.frontiersin.org/article/10.3389/feart.2015.00063/abstract

Stubbins has a website detailing this and other work on black carbon at:

http://www.skio.usg.edu/?p=research/chem/biogeochem/blkcarbon

Editorial: Skidaway Institute a quiet resource

August 17, 2015

The Savannah Morning News published a very nice editorial about UGA Skidaway Institute today. 

http://savannahnow.com/opinion/2015-08-16/editorial-skidaway-institute-quiet-resource

Warming climate may release vast amounts of carbon from long-frozen Arctic soils

April 24, 2015

While climatologists are carefully watching carbon dioxide levels in the atmosphere, another group of scientists is exploring a massive storehouse of carbon that has the potential to significantly affect the climate change picture.

Aron Stubbins

Aron Stubbins

University of Georgia Skidaway Institute of Oceanography researcher Aron Stubbins is part of a team investigating how ancient carbon, locked away in Arctic permafrost for thousands of years, is now being transformed into carbon dioxide and released into the atmosphere. The results of the study were published in Geophysical Research Letters.

The Arctic contains a massive amount of carbon in the form of frozen soil—the remnants of plants and animals that died more than 20,000 years ago. Because this organic material was permanently frozen year-round, it did not undergo decomposition by bacteria the way organic material does in a warmer climate. Just like food in a home freezer, it has been locked away from the bacteria that would otherwise cause it to decay and be converted to carbon dioxide.

“However, if you allow your food to defrost, eventually bacteria will eat away at it, causing it to decompose and release carbon dioxide,” Stubbins said. “The same thing happens to permafrost when it thaws.”

Scientists estimate there is more than 10 times the amount of carbon in the Arctic soil than has been put into the atmosphere by burning fossil fuels since the start of the Industrial Revolution. To look at it another way, scientists estimate there is two and a half times more carbon locked away in the Arctic deep freezer than there is in the atmosphere today. Now, with a warming climate, that deep freezer is beginning to thaw and that long-frozen carbon is beginning to be released into the environment.

“The study we did was to look at what happens to that organic carbon when it is released,” Stubbins said. “Does it get converted to carbon dioxide or is it still going to be preserved in some other form?”

Stubbins and his colleagues conducted their fieldwork at Duvanni Yar in Siberia. There, the Kolyma River carves into a bank of permafrost, exposing the frozen organic material. This worked well for the scientists, as they were able to find streams that consisted of 100 percent thawed permafrost. The researchers measured the carbon concentration, how old the carbon was and what forms of carbon were present in the water. They bottled it with a sample of the local microbes. After two weeks, they measured the changes in the carbon concentration and composition and the amount of carbon dioxide that had been produced.

A bank of permafrost thaws near the Kolyma River in Siberia.

“We found that decomposition converted 60 percent of the carbon in the thawed permafrost to carbon dioxide in two weeks,” Stubbins said. “This shows the permafrost carbon is definitely in a form that can be used by the microbes.”

Lead author Robert Spencer of Florida State University added, “Interestingly, we also found that the unique composition of thawed permafrost carbon is what makes the material so attractive to microbes.”

The study also confirmed what the scientists had suspected: The carbon being used by the bacteria is at least 20,000 years old. This is significant because it means that carbon has not been a part of the global carbon cycle in the recent past.

“If you cut down a tree and burn it, you are simply returning the carbon in that tree to the atmosphere where the tree originally got it,” Stubbins said. “However, this is carbon that has been locked away in a deep-freeze storage for a long time.

“This is carbon that has been out of the active, natural system for tens of thousands of years. To reintroduce it into the contemporary system will have an effect.”

The carbon release has the potential to create what scientists call a positive feedback loop. This means as more carbon is released into the atmosphere, it would amplify climate warming. That, in turn, would cause more permafrost to thaw and release more carbon, causing the cycle to continue.

“Currently, this is not a process that shows up in future (Intergovernmental Panel on Climate Change) climate projections; in fact, permafrost is not even accounted for,” Spencer said.

“Moving forward, we need to find out how consistent our findings are and to work with a broader range of scientists to better predict how fast this process will happen,” Stubbins said.

In addition to Stubbins and Spencer, the research team included Paul Mann from Northumbria University, United Kingdom; Thorsten Dittmar from the University of Oldenburg, Germany; Timothy Eglinton and Cameron McIntyre from the Geological Institute, Zurich, Switzerland; Max Holmes from Woods Hole Research Center; and Nikita Zimov from the Far-Eastern Branch of the Russian Academy of Science.

Barents Sea Cruise 5-1-13

May 1, 2013

Skidaway Institute scientists Marc Frischer and Jens Nejstgaard are participating in a research cruise in the Barents Sea, north of Norway. This is an account of the experience from Marc.

First day of the cruise.  Everyone is excited and anxious.  We were all on board the ship by 9:00am and busy scurrying around making final preparations, securing instruments & lab gear and setting up the various work stations.  The crew was exceedingly helpful and efficient.

The Marine Tech was delayed in Oslo (coming by plane) so we couldn’t leave until he arrived.  He made it around noon and we were underway at about 12:45pm.  We headed north through the fjords.  The scenery was fantastic.  Calm water, snow and fog covered mountains, sun and clouds.  Not too much wildlife present, some seabirds.  The captain (Tom Ole) predicted that we’d see a lot of life near the ice edge, perhaps even whales.  Next week they have a whale observing cruise scheduled in the same area that we are heading to now.

Heading out to sea

Heading out to sea

After discussions with Aud Larsen and Jens Nejstgaaard we decided that due to our late departure we would head to immediately to the polar front and ice edge to take full advantage of the night to steam.  Of course night doesn’t really feel like night since it only gets dim for a few hours this far north this time of year, but for some reason we still get tired.  We also decided to stop a various points along our course to characterize the water and plankton communities.  We are occupying a standard transect used by IMR (Norwegian Institute of Marine Research) called Fugløya – Bjørnøya and are lucky that the previous week (25 – 29 April 2013) this line had been run giving us a pretty good idea of what we’ll find this week.  The data from the previous week indicated that water conditions are not unusual and that we could expect to reach the polar front approximately 225 NM north of our first sea station after leaving the fjords.

Our goal is to locate water masses containing the algae Phaeocystis pouchetti in various stages of its bloom cycle so that we can study how it is eaten (or not) by other organisms and thereby contributes to the food web.  It’s a very interesting and mysterious algae because of its importance as a major blooming algae in high latitude waters and because whether it is eaten seems to be highly variable.  We suspect that at times it is readily eaten and at others it is not and that this is mainly due to its ability to dramatically alter its size, chemically defend itself from predation and its resistance to ubiquitous viruses.  Despite the fact that this algae is slimy and smelly, all of us who study it love it because it’s so interesting.  We call the  project “Phaeo Enigma” because there is so much we don’t understand about this organism.

We stopped around 3:30 pm (13:30 GMT) in the fjord to take a quick sample.  The water column profile was classic textbook fjord with a chla maximum at about 23 meters.  The water contained big colonies of the algae we are studying (Phaeocystis pouchetti), but we are sticking with our plan to head north.

Continuing north we finally made it to our first sea station at 70 30 N 20 00 E.  Again, it was a quick stop to look at the water.  As we expected we found classic Norwegian Coastal Current water.  Phaeocystis was present here too, though at lower concentrations that we found in the fjords.  After a quick 30 min stop we were back on our way.

Since there wasn’t much to do most for the remainder of the evening, most of us thought it was prudent to turn in early for the evening.  Soon enough we will all be very busy!

Stubbins joins Arctic cruise

June 19, 2012

Skidaway Institute scientist Aron Stubbins has spent the last couple of months working in Germany. He reports in on a cruise he is about to join.

I’m off to the Arctic on Germany research vessel Polarstern.

I will be collecting samples to determine the export of dissolved black carbon from the Arctic to the Atlantic Ocean. The cruise will transect Fram Strait, the major gateway for the exchange of water and dissolved material between the two ocean basins. Today we will leave Bremerhaven in Germany, site of the Alfred Wegener Institute which houses the R/V Polarstern.

In a few days we will reach Svalbard and begin a transect from there towards Greenland following 78.5 degrees north. During this transect we will first cross the West Spitsbergen Current (WSC) which carries warm Atlantic waters north into the Arctic Ocean. This is the northernmost extent of the Gulf Stream that originates in the Gulf of Mexico and travels past Georgia and Savannah at the edge of the Georgia shelf.

We will then transit west towards Greenland, breaking ice as we go. In this part of the cruise we will collect water samples from the East Greenland Current (EGC). This carries cold, polar water south into the Atlantic Ocean. A figure of the currents is shown at http://www.whoi.edu/science/PO/people/pwinsor/project_ao02.html.

My work will look at the amount and type of dissolved organic carbon that these two massive currents carry north (WSC) and south (EGC). Our progress can be followed in real time at http://www.awi.de/en/infrastructure/ships/polarstern/where_is_polarstern/. This site will also post weekly updates about life and science aboard R/V Polarstern.

The cruise will end in Longyearbyen on Svalbard where I will collect some samples to continue ongoing investigations into the sources and nature of glacier carbon (http://www.skio.usg.edu/?p=research/chem/biogeochem/glaciers).

Back out on the ice cap

January 24, 2012

19 Jan 2012

Well fed and rested we were ready for another day on the ice. Because of all the uncertainty surrounding the ice conditions we are all trying to make the most of the opportunities we get. Today, in addition to collecting our normal samples, the Bronk team (Stephen and Rachel) are planning to stay a bit longer to collect ice cores and Niko is going to attempt to collect samples for his methane studies. It’s a lot to do and necessitated rather intricate planning, so that we always have enough snow machines, sleds, drivers, guides, and bear guards. Everything started smoothly. We all set out about 11:00 as the dawn twilight began (still no sun, but some light) and headed north. First, we headed north over the frozen tundra and then out onto the ocean. The ice at our new location was very jumbled and rough, which made for a bit of a bumpy snow machine ride. However, the rough ride was reassuring since it meant the ice was probably quite stable. The roughness in the ice and the formation of pressure ridges is largely due to wind moving the ice around and piling it into the shore.  Eventually, with enough pressure it becomes locked in and grounded to the bottom.

Once at the site we began to set-up the camp. Since it was a new camp we had to drill new ice holes and situate the tents over them. We also set-up propane heaters in each of the tents, and unloaded all our gear. It was a cold morning but absolutely spectacular to be out on the frozen Arctic Ocean.

Marc and Victoria geared-up


Drilling an ice hole


Ice camp

Tony Kaleak


Arctic icescape

Everything was going smoothly. First, Victoria and I deployed our Manta water quality instrument to measure the water column and then the Bronk group took over. Then disaster struck! While moving one of their very heavy sample boxes Debbie’s foot slipped into the ice hole and she fell. Her hand hit the propane heater;her down coat touched the hot chimney and melted. Feathers went everywhere. Debbie screamed. It was chaos, but no one panicked. Debbie was quickly pulled to her feet and, besides a nasty burn on her hand (and the destroyed coat), she was fine.

Dr. Debbie Bronk after the fall, it could have been much worse!

We turned the heater off and, when the feathers settled, we were able to continue. But, we thought it best to get Debbie back home so that someone could look at her burn. So while Debbie was escorted back, the rest of us finished-up sampling and then followed her in.

Once back we all got busy in the lab processing the precious water samples that we had collected.

Dr. Tish Yager in her filtering zone

We all realized how lucky we all were today and grateful to be back safely. I for one slept well.

The Alaska adventure continues

January 24, 2012

18 Jan 2012

Given the uncertainty of the ice conditions today was an evaluation and re-strategizing day. We began with a big meeting of all the science and logistics team members. We went over the previous day’s adventures and discussed options. Obviously we have come all this way to conduct our research, but we won’t do it if it isn’t safe. Since all of our previous sampling locations are now unavailable, we are left with the option of locating another site or not sampling at all. Brower suggested that further south, because of differences in oceanographic conditions (only 1 northward current) the ice might be more stable than it is where we have been sampling in the Chuckchi sea near Point Barrow. At Point Barrow three currents converge making it a much more dynamic location oceanographically. This can lead to ice instability. Our other option is to head north where, according to Brower, the ice hasn’t moved for the past several days and therefore is probably stable. The problem with that site is that it is very shallow. We much prefer to sample deeper water since we are trying to study water column processes representative of the Arctic Coastal Ocean, and the shallow site may be heavily influenced by processes that occur in the bottom sediments.

So after the big meeting, we were again in standby mode to allow the logistic team to visit and evaluate our options. By the late afternoon it was clear that the southern deep water option was not available.  The ice was clearly unstable there too. Plus, the site was far enough away that it would have been difficult to stage an expedition and get our samples back to the lab without them freezing on the trip home.  After verifying that the Northern site was safe it was decided that that is where we’d go.

Map of Barrow region showing potential site locations

Since it was a light day and everyone was done reasonably early we all decided to go out to dinner. We went to Pepe’s North of the Border, a Barrow favorite. Pepe’s is a Mexican restaurant that has been in business for over 30 years run by the proprietor, Fran. Fran was originally from Seattle and came to the North Slope over 40 years ago as pipeline engineer. She stayed, eventually settling in Barrow, and is still active at the youthful age of 82.

ArcticNitro gang enjoying a meal at Pepe’s North of the Border, Photo Jenna Spackeen

Barrow — January 17

January 19, 2012

17 January 2012

We woke up a little late this morning after yesterday’s late night. Victoria and I met to go over plans for the day and to discuss the details of the experiment that we plan to start today. The experiment is a component of SSU graduate student Zac Tait’s thesis project. Zac couldn’t come this time because he is about to be a father. His daughter, who they will name Iris, is due on 4 February. Zac left me and Victoria with extensive notes and prepared all the supplies but we’ll run it.

The goal of this experiment, as in previous ones, is to test the hypothesis that Arctic Ocean bacteria can utilize the carbon locked up in the humic material that makes up the permafrost, but doing so will require them to acquire more nitrogen. The most abundant source of nitrogen in the water is found in the mineral form of nitrate (NO3). One of the major questions of our project is whether the release of the carbon stored in the permafrost will set-up increased competition for NO3 between the photosynthesizing autotrophs (phytoplankton) and the CO2 respiring heterotrophs (bacteria). The idea is that the more organic carbon that gets released into the ocean the more bacteria activity will occur.  However, that increase in activity will be at the expense of nitrate resources that the phytoplankton need in the spring (when the lights come back on) to grow.  If there is less nitrate available there will be less phytoplankton and therefore less fish, seals, whales etc that depend on a food web whose base is the phyotoplankton. So it’s somewhat of a counterintuitive idea; add more nutrients and get less out.

In previous experiments we found generally that this hypothesis is true, but that the carbon-rich humic material we collected directly from the tundra is used very slowly which makes the question hard to address given the practical constraints of our time here. Because our time is short and the temperatures are cold which slows everything down, we decided on a new twist for these experiments. This time, we are using humic material that has already been broken down some by exposure to sunlight. This process is called photo degradation. Photo degrading complex carbon molecules occurs naturally (It’s reasonable to expect that humics derived from melting permafrost will be exposed to sunlight on their trip to the ocean.) and it increases its availability to bacteria as a nutrient source. So, prior to the trip Zac exposed humics in a solar simulator for 0, 5 and 15 days resulting in increasingly degraded humic materials.  Amazingly, after 15 days of simulated exposure to sunlight the brown humic material was almost completely colorless. The carbon is still there but since it has been broken into smaller and less condensed molecules it doesn’t absorb as much light, thus it appears lighter in color.

Photo degraded humics used in our bioassay experiment

Our experimental design is relatively simple. We use 4 liter (1 gal) milk jugs (actually they are a special nontoxic plastic but they look like milk jugs) to incubate bacteria with the humics and allow them to grow.  Over the course of the week we’ll be here we take samples to watch the bacteria grow track the dynamics of the carbon and nitrogen. Our hypothesis will be supported if we see the bacteria grow and the carbon disappear in coordination with the disappearance of the NO3.

After 9 hours of filtering and rinsing we finally got the experiment set-up and running. We’ll sample it daily (or every other day) for the time we’re up here.

Zac’s experiment running

 

But the real excitement happened on the ice today. Because we are so concerned about the stability of the ice the UMIAQ crew went out to check our ice camp which we had left standing. When they got out there they realized that the ice was moving a lot and that large cracks were beginning to appear. The crew was scared enough that they just came back leaving the tent behind. But Brower thought they could get it and made a heroic trip back out with Tony and Glenn. They ripped the tents out of the ice leaving the stakes behind, quickly lashed it on two sleds, and hightailed it back jumping cracks with open water. We heard some of it on the radio. The whole situation has us pretty nervous and thinking very carefully about safety.

[Picture –

Brower and Glenn standing by the rescued tents.

Either way tomorrow we won’t go out.  We’ll re-group and re-evaluate.