Posts Tagged ‘chemistry’

UGA Skidaway Institute associate professor cited for top research articles

December 2, 2016

University of Georgia Skidaway Institute of Oceanography associate professor Aron Stubbins is one of just a handful of researchers cited in the journal Limnology and Oceanography for authoring two of the journal’s top scientific papers over the past 60 years.

Skidaway Institute's Aron Stubbins

Skidaway Institute’s Aron Stubbins

Limnology and Oceanography is an official publication of the Association for the Sciences of Limnology and Oceanography and is considered a premier scientific journal. In its recently published 60th anniversary issue, the journal collected and republished the 10 most cited research papers for each of the last six decades. Stubbins authored or co-authored two of those papers, one in 2008 and the other in 2010.

“It came as quite a surprise to see two articles show up on the list,” Stubbins said. “I was at a conference and wasn’t really checking my email when one of my colleagues let me know.”

The journal used the number of times a paper was cited in future studies as the yardstick to determine which papers should be included on the list. It is one commonly used method for measuring the impact of a scientist’s work.

“The list isn’t really about popularity,” Stubbins said. “It’s about usefulness. That people have found some of my work useful over the years is rewarding.”

The 2008 paper was titled “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter.” The lead author was John Helms. Stubbins was a co-author along with four other scientists. The research team developed a new method for extracting new information from a relatively common and simple test of the color of dissolved organic matter.

Stubbins was the lead author, along with nine co-authors, of the second paper, “Illuminated darkness: Molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry.” The study examined organic carbon carried to the ocean by the Congo River — after the Amazon, the second largest river in the world in terms of carbon and water flow. The research team studied how sunlight degrades organic material, including which compounds are degraded, which are not and what new compounds are created when sunlight shines on river water.

“His inclusion in this seminal volume is quite an honor for Dr. Stubbins,” UGA Skidaway Institute Interim Director Clark Alexander said. “This recognition validates what we have always known, that he is conducting groundbreaking and meaningful research that is recognized around the world.”

All 60 papers can be found at http://aslopubs.onlinelibrary.wiley.com/.

 

Advertisements

UGA Skidaway Institute scientists study role of sunlight on marine carbon dioxide production

July 21, 2016

Scientists at the University of Georgia Skidaway Institute of Oceanography have received a $527,000 grant from the National Science Foundation Chemical Oceanography Program to answer one of the long-standing questions about carbon in the ocean—the rate sunlight produces carbon dioxide from organic carbon molecules in the sea.

Jay Brandes, Leanne Powers and Aron Stubbins will use a new technique they developed to measure this process, which is known as photo-degradation.

Researchers Aron Stubbins (l) and Jay Brandes

Researchers Aron Stubbins (l) and Jay Brandes

The ocean is full of millions of different types of organic compounds. Some are consumed by bacteria, but many are not easily consumed and remain in the ocean for hundreds or thousands of years. However, near the surface, sunlight causes the breakdown of organic compounds and converts them into carbon dioxide through photo-degradation. Until recently, this process has been nearly impossible to measure directly in most of the ocean because the additional carbon dioxide produced per day is tiny compared to the existing high concentration of CO2 present in the sea.

Researcher Leanne Powers

Researcher Leanne Powers

Brandes described the problem as looking for a needle in a haystack.

“You might think this is not important because it is hard to measure, but that’s not true,” he said. “We’re talking about a process that takes place across the whole ocean. When you integrate that over such a vast area, it becomes a potentially very important process.”

The project became possible when the team developed a new technique to measure the change in CO2 concentration in a seawater sample. The concept was the brainchild of Powers, a Skidaway Institute post-doctoral research associate. The technique uses carbon 13, a rare, stable isotope of carbon that contains an extra neutron in its nucleus. Researchers will add a carbon 13 compound to a sample of seawater and then bombard the sample with light. The scientists will then use an instrument known as an isotope ratio mass spectrometer to measure the changes in CO2 concentration.

According to Brandes, this project will be breaking new ground in the field of chemical oceanography.

“We don’t know what the photo-degradation rates are in most of the ocean,” he said. “We are going to establish the first numbers for that.”

The team plans to take samples off the Georgia coast, as well as from Bermuda and Hawaii.

While they will continue to refine the carbon 13 technique, Brandes said it is now time to put that tool to work.

“It is now a matter of establishing what the numbers are in these different locations and trying to develop a global budget,” he said. “Just how much dissolved organic carbon is removed and converted to CO2 every year?”

The project is funded for three years. The team will also create an aquarium exhibit at the UGA Aquarium on the Skidaway Island campus to help student groups and the public understand river and ocean color.

VIDEO – The climate change issue you probably haven’t heard about

July 6, 2016

The soil in the Arctic holds a massive store of carbon. These remnants of plants and animals that lived tens of thousands of years ago have been locked in permafost, soil that is always frozen…until now.

UGA Skidaway Institute of Oceanography scientist Aron Stubbins is part of a team that travelled to Siberia to discover what happens to that carbon when the permafrost thaws.

 

UGA Skidaway Institute team studies nutrient levels in Georgia’s coastal estuaries

June 6, 2016

How much of a nutrient load is too much for Georgia’s coastal rivers and estuaries? A research team from University of Georgia Skidaway Institute of Oceanography is helping Georgia’s Environmental Protection Division answer that question. Their primary focus is on the estuary at the mouth of the Ogeechee River, where the researchers are measuring nutrient concentrations and other water properties to determine how they change as they flow through the estuary.

The nutrients are chemicals like nitrates and phosphates typically introduced into the rivers by agricultural runoff, storm water or sewage effluents, and the natural decay of organic matter in the river. When present in high concentrations, the nutrients act as fertilizer, promoting excessive growth of marine plants, especially microscopic marine plants called phytoplankton.

Researcher Kate Doyle lowers a sensor package into the water to measure salinity, temperature and depth.

Researcher Kate Doyle lowers a sensor package into the water to measure salinity, temperature and depth.

Elsewhere on the East Coast, excessive nutrients in estuaries have been linked to toxic algal blooms that can cause fish kills or shellfish closures. Death and decay of algal blooms by bacteria can drive oxygen concentrations down to levels that are unhealthy for other marine life. These are not presently known to be significant problems in Georgia’s waters, but scientists and regulators do not know what the thresholds are for developing water quality problems.

“The Georgia EPD wants to know how much nitrogen is coming down the river and whether it has any consequences when it gets to the estuary,” said UGA Skidaway Institute scientist William Savidge. “It doesn’t really matter if you have high nutrient concentrations if it is not having a harmful effect.”

The EPD is interested in these issues because they are mandated by the Environmental Protection Agency to set limits on nutrient levels for Georgia’s estuaries. Savidge describes the mandate as a difficult problem for several reasons.

“There is not any current and systematic information on nutrient conditions in most of the estuaries,” he said, “nor is there much information on the consequences of nutrient availability in the estuaries, and it’s those consequences that are the most important.”

They are currently mapping the biological and chemical properties of the Ogeechee River estuary each season to assess the nutrient changes throughout the year and to see what effects can be seen in the river and the estuary. Twice every quarter for the last year, the researchers have followed the incoming tide and sampled the river continuously as they moved upstream from the mouth of the estuary to fresh water. They used an onboard set of sensors to obtain continuous surface measurements of temperature, salinity, dissolved oxygen, chlorophyll (indicative of phytoplankton), turbidity and colored dissolved organic matter. In addition to the continuous surface measurements, the team stopped periodically and collected water samples from the bottom and throughout the water column. The product of each of these expeditions was a detailed map of conditions on the river, and when and where they are changing.

Researcher Lixin Zhu filters larger-volume surface water samples collected from the flow-through system to analyze for dissolved organic carbon.

Researcher Lixin Zhu filters larger-volume surface water samples collected from the flow-through system to analyze for dissolved organic carbon.

As they expected, Savidge and his team observed a wide range of conditions depending on the season. Nutrient inputs tend to be highest in the spring when agricultural fields are fertilized.

“Nutrient delivery is high in the spring, but we don’t have a high chlorophyll concentration in the Ogeechee River because, presumably, the nutrients are being washed off into the coastal ocean before any effect is noticed,” Savidge said

On the other hand, chlorophyll levels — which indicate phytoplankton population — are highest in the summer. Low summer river flow means water remains in the system longer. When combined with more sunlight and warmer temperatures, this slow flow this allows more time for the microscopic plants to grow.

In addition to sampling the Ogeechee River, the team is also conducting a smaller sampling project in the Altamaha River for comparison purposes.

Field work on the project will end in June, and Savidge expects to report the team’s findings to Georgia EPD by mid-summer.

“The Georgia EPD is going to have to balance the potential negative risks of nutrient loading versus the economic consequences of restricting nutrient additions,” Savidge said. “If, for example, most of the nutrient additions are agricultural, and that is creating problems downstream, the Georgia EPD may be forced by EPA to regulate nutrient additions, either by restricting how much fertilizer is placed on fields or mandating larger buffer zones around rivers and creeks.”

In addition to Savidge, the research team includes UGA Skidaway Institute scientists Jay Brandes and Aron Stubbins, research associate Kate Doyle and graduate student Lixin Zhu. UGA researchers Brock Woodson and Mandy Joye are also contributing.

UGA Skidaway Institute scientists study dynamic Cape Hatteras waters

April 5, 2016

 

Sometimes called the “graveyard of the Atlantic” because of the large number of shipwrecks there, the waters off of Cape Hatteras on the North Carolina coast are some of the least understood on the U.S. eastern seaboard. University of Georgia Skidaway Institute of Oceanography scientist Dana Savidge is leading a team, which also includes UGA Skidaway Institute scientist Catherine Edwards, to investigate the dynamic forces that characterize those waters.

The four-year project, informally called PEACH: Processes driving Exchange at Cape Hatteras, is funded by $5 million grant from the National Science Foundation. Skidaway Institute will receive $1.2 million for its part.

UGA Skidaway Institute scientists Dana Savidge (l) and Catherine Edwards

UGA Skidaway Institute scientists Dana Savidge (l) and Catherine Edwards

Two opposing deep ocean currents collide at Cape Hatteras, making the Atlantic Ocean near there highly dynamic. The warm Gulf Stream hugs the edge of the continental shelf as it flows north from the tip of Florida.  At Cape Hatteras, it opposes a colder current, the Slope Sea Gyre current, that moves southward along the mid-Atlantic coast and breaks away from the coast toward northern Europe. As in the deep ocean, the cool shelf waters of the mid-Atlantic continental shelf meet the warm salty shelf waters from the south at Cape Hatteras.

The convergence of all of these currents at one place means that, after long lifetimes in the sunlit shallow shelves, these waters may export large quantities of organic carbon—small plants and animals that have grown up on the shelf—to the open ocean. Scientists have little understanding of the details of how that happens and how it is controlled by the high-energy winds, waves and interaction the between the constantly changing Gulf Stream and Slope Sea Gyre currents.Cape Hatteras Project Map 2 w

According to Savidge, the area is very difficult to observe because the water is shallow, the sea-state can be challenging and the convergence of strong currents at one place make it hard to capture features of interest.

“It’s difficult to get enough instruments in the water because conditions change rapidly over short distances, and it’s hard to keep them there because conditions are rough,” she said. “Ships work nicely for many of these measurements, but frequently, the ships get chased to shore because of bad weather.”

To overcome the limitations of ship-based work, the research team will use a combination of both shore- and ocean-based instruments to record the movement and characteristics of the streams of water. A system of high-frequency radar stations will monitor surface currents on the continental shelf all the way out to the shoreward edge of the Gulf Stream, providing real-time maps of surface currents.

“Measuring surface currents remotely with the radars is a real advantage here,” Savidge said. “They cover regions that are too shallow for mobile vehicles like ships to operate while providing detailed information over areas where circulation can change quite dramatically over short times and distances.”

Edwards will lead a robotic observational component in which pairs of autonomous underwater vehicles called gliders will patrol the shelf to the north and south of Cape Hatteras.  Packed with instruments to measure temperature, salinity, dissolved oxygen and bio-optical properties of the ocean, both shelf- and deep-water gliders fly untethered through the submarine environment, sending their data to shore at regular intervals via satellite.

To compensate for the notoriously difficult conditions, Edwards will take advantage of a novel glider navigation system she developed with students and collaborators at Georgia Tech that automatically adjusts the glider mission based on ocean forecasts as well as data collected in real time.

“Our experiments show that we can keep the gliders where they need to be to collect the data we need,” she said. “The best part is that we get to put the maps of surface currents together with the subsurface information from the gliders, and we can make all of this information available in real time to scientists, fishermen and the general public.”

The researchers will also place a number of moorings and upward-pointing echo sounders on the sea floor. These acoustic units will track the water movement while also recording temperature and density.  PEACH will focus primarily on the physics of the ocean, but the information the researchers gather will also help scientists more fully understand the chemistry and biology, and may cast light on issues like carbon cycling and global climate change.

“Everyone is interested in the global carbon budget, and the effect of the coastal seas on that budget is not well understood,” Savidge said. “For example, many scientists consider the continental shelf to be a sink for carbon, because there is a lot of biology going on and it draws in carbon.

“However, there are indications that the shelf south of Hatteras is both a sink and a source of carbon. This project may help clarify that picture.”

The project will run through March 2020. The remaining members of the research team are Harvey Seim and John Bane of the University of North Carolina; Ruoying He of North Carolina State University; and Robert Todd, Magdalena Andres and Glen Gawarkiewicz from Woods Hole Oceanographic Institute.

 

Skidaway Institute scientist shares Gulf oil spill research grant

December 17, 2014

University of Georgia Skidaway Institute of Oceanography scientist Catherine Edwards is part of a research team that has received an $18.8 million grant to continue studies of natural oil seeps and track the impacts of the BP/Deepwater Horizon oil spill in the Gulf of Mexico ecosystem.

Known as ECOGIG-2 or “Ecosystem Impacts of Oil and Gas Inputs to the Gulf,” the project is a collaborative, multi-institutional effort involving biological, chemical, geological and chemical oceanographers led by the University of Georgia’s Samantha Joye. The research team has worked in the Gulf since the weeks following the 2010 Macondo well blowout.

The three-year, $18.8 million ECOGIG-2 program was funded by the Gulf of Mexico Research Initiative, or GoMRI.

“Our goal is to better understand the processes that have affected the oil spill since 2010,” Edwards said. “How the droplets were dispersed? Where the oil went? How it was taken up by small microbes and also the effects on animals further up the food chain?”

Skidaway Institute scientist Catherine Edwards adjusts a glider’s buoyancy with graduate students Sungjin Cho and Dongsik Chan.

Skidaway Institute scientist Catherine Edwards adjusts a glider’s buoyancy with graduate students Sungjin Cho and Dongsik Chan.

Edwards’ role in the project is to use autonomous underwater vehicles, also called “gliders,” to collect data on conditions around the spill site. Equipped with sensors to measure characteristics such as depth, water temperature, salinity and density, the gliders can cruise the submarine environment for weeks at a time, collecting data and transmitting it back to a ship or a shore station.

“We want to understand the ocean currents—how they change over time and how they change in depth,” Edwards said. “Surface measurements give us a two-dimensional picture of the ocean. Glider data in the vertical provides more valuable information for more fully understanding ocean currents and how they arise.”

The gliders will operate both in conjunction with shipboard instruments and also independently. One advantage of using the gliders is they can operate during storms and rough weather, when it may not be possible to use ships. Edwards said shipboard work doesn’t always give a full picture of ocean dynamics simply by the fact that they can only go out when the weather is reasonably clear.

When working in conjunction with research ships, the gliders can provide additional observations, significantly improving the quality of the data set. The gliders also report dissolved oxygen concentrations and optical measurements of chlorophyll and organic matter, and may also be used as a test vehicle for new instruments in development.

Edwards will use “GENIoS,” a new software package, to help navigate the gliders. GENIoS uses high-resolution forecast models of wind and ocean currents, along with information from the glider itself, to calculate the optimal path for the gliders. This will improve the quality of the scientific data collected.

GENIoS is a collaboration among Edwards, Fumin Zhang from the Georgia Institute of Technology and their two Georgia Tech Ph.D. students, Dongsik Chang and Sungjin Cho. GENIos has been tested for more than 210 glider-days on the continental shelf off Georgia and South Carolina. This experiment will be its first test in the Gulf of Mexico.

Edwards also hopes to use this project to test the gliders as platforms for new, experimental sensors developed by other members of the ECOGIG-2 team.

Others involved in ECOGIG-2 include UGA marine sciences faculty Christof Meile, Renato Castelao and Catherine Edwards as well as Annalisa Bracco and Joe Montoya of Georgia Tech.

For additional information, contact Catherine Edwards at (912) 598-2471 or catherine.edwards@skio.uga.edu.

Skidaway Institute scientists seek answers to salt marsh questions

January 2, 2013

Salt marshes are a vital part of the coastal ecosystem. They provide a nursery for many kinds of marine animal life. Sitting in the transition zone between the ocean and the land, salt marshes serve as a physical buffer against severe weather. They act as a chemical buffer by capturing, holding and releasing nutrients that are brought in on each tide. As a result, the marshes have a great influence on the type and amount of nutrients that enter the sounds and the ocean. That buffering capacity varies on tidal, daily and seasonal time scales, but how it functions is poorly documented.

A team of Skidaway Institute of Oceanography scientists have begun a project to get a clearer picture of how salt marshes function and interact with their surrounding environment.

The composition of the science team reflects the interdisciplinary nature of the project. Principal investigator Jay Brandes, Aron Stubbins and Bill Savidge are chemical oceanographers, and Catherine Edwards is a physical oceanographer. Geologist Clark Alexander and physical oceanographers Jack Blanton and Dana Savidge are also contributing to the effort. The three-year project is funded by a $699, 971 grant from the National Science Foundation.

The research team at Groves Creek (l-r) Clark Alexander, Jack Blanton, Catherine Edwards, Jay Brandes, Dana Savidge, Bill Savidge, Aron Stubbins

The research team at Groves Creek (l-r) Clark Alexander, Jack Blanton, Catherine Edwards, Jay Brandes, Dana Savidge, Bill Savidge, Aron Stubbins

“Scientists have looked at salt marshes in the past and have gotten some good data,” Brandes said. “However, this will be the first detailed look at the combined functions of one of these marsh systems.”

The project will focus on Groves Creek, a portion of coastal salt marsh along the Wilmington River, adjacent to the Skidaway Institute campus. Groves Creek has been the site of other research projects.  Over the past three years, Blanton, Alexander, Dana Savidge and others have studied the topography and water-flow in the marsh as part of a Department of Energy-funded project.  Because of this, the physical layout of the marsh has been documented to a fine detail.

“We already know a lot about this area, especially how the water moves in and out of the marsh on the tides,” said Brandes. “We have a very good understanding of the topography of the top of the marsh and its tidal creeks, both above and below the surface.”

The scientists also believe the Groves Creek area is fairly representative of salt marshes along the Georgia and South Carolina coasts.

From a chemical standpoint, the research will focus on way the salt marsh uses carbon: is it a consumer or producer of carbon-based organic material and nutrients?

“Marshes take material in from the river on every high tide, and they deliver material back to the river on the falling tide — but it isn’t the same stuff,” Savidge said. “The marsh changes the river chemistry on every tidal cycle.”

There isn’t much consensus on what controls that exchange between river and marsh. “That is one of the big questions,” said Brandes, “Trying to understand whether the marsh is a producer or consumer, and how that changes over time, the seasons, the tides and so on.”

To get a detailed history of marsh-river exchange, the scientists will place sensors in the marsh that will measure various conditions every 15 minutes. Remote sensors cannot measure everything, so the research team will also be collecting samples on a daily basis and returning them to their labs for analysis.  Understanding the big picture will come from adding up all the little incremental changes over time and relating them to the actions of sun, tide and weather on the marsh surface.

Stubbins will focus his efforts on the role of dissolved organic carbon in the marsh. Savidge will work look at how the salt marsh uses dissolved oxygen. Edwards will be modeling how water flows in and out of the system and how that movement interacts with the chemical and biological activity.

When the project is complete in three years, the Skidaway scientists expect to have a much more extensive picture of the role salt marshes play in the larger coastal ecosystem.

nutri