Posts Tagged ‘glider’

Skidaway Institute scientist shares Gulf oil spill research grant

December 17, 2014

University of Georgia Skidaway Institute of Oceanography scientist Catherine Edwards is part of a research team that has received an $18.8 million grant to continue studies of natural oil seeps and track the impacts of the BP/Deepwater Horizon oil spill in the Gulf of Mexico ecosystem.

Known as ECOGIG-2 or “Ecosystem Impacts of Oil and Gas Inputs to the Gulf,” the project is a collaborative, multi-institutional effort involving biological, chemical, geological and chemical oceanographers led by the University of Georgia’s Samantha Joye. The research team has worked in the Gulf since the weeks following the 2010 Macondo well blowout.

The three-year, $18.8 million ECOGIG-2 program was funded by the Gulf of Mexico Research Initiative, or GoMRI.

“Our goal is to better understand the processes that have affected the oil spill since 2010,” Edwards said. “How the droplets were dispersed? Where the oil went? How it was taken up by small microbes and also the effects on animals further up the food chain?”

Skidaway Institute scientist Catherine Edwards adjusts a glider’s buoyancy with graduate students Sungjin Cho and Dongsik Chan.

Skidaway Institute scientist Catherine Edwards adjusts a glider’s buoyancy with graduate students Sungjin Cho and Dongsik Chan.

Edwards’ role in the project is to use autonomous underwater vehicles, also called “gliders,” to collect data on conditions around the spill site. Equipped with sensors to measure characteristics such as depth, water temperature, salinity and density, the gliders can cruise the submarine environment for weeks at a time, collecting data and transmitting it back to a ship or a shore station.

“We want to understand the ocean currents—how they change over time and how they change in depth,” Edwards said. “Surface measurements give us a two-dimensional picture of the ocean. Glider data in the vertical provides more valuable information for more fully understanding ocean currents and how they arise.”

The gliders will operate both in conjunction with shipboard instruments and also independently. One advantage of using the gliders is they can operate during storms and rough weather, when it may not be possible to use ships. Edwards said shipboard work doesn’t always give a full picture of ocean dynamics simply by the fact that they can only go out when the weather is reasonably clear.

When working in conjunction with research ships, the gliders can provide additional observations, significantly improving the quality of the data set. The gliders also report dissolved oxygen concentrations and optical measurements of chlorophyll and organic matter, and may also be used as a test vehicle for new instruments in development.

Edwards will use “GENIoS,” a new software package, to help navigate the gliders. GENIoS uses high-resolution forecast models of wind and ocean currents, along with information from the glider itself, to calculate the optimal path for the gliders. This will improve the quality of the scientific data collected.

GENIoS is a collaboration among Edwards, Fumin Zhang from the Georgia Institute of Technology and their two Georgia Tech Ph.D. students, Dongsik Chang and Sungjin Cho. GENIos has been tested for more than 210 glider-days on the continental shelf off Georgia and South Carolina. This experiment will be its first test in the Gulf of Mexico.

Edwards also hopes to use this project to test the gliders as platforms for new, experimental sensors developed by other members of the ECOGIG-2 team.

Others involved in ECOGIG-2 include UGA marine sciences faculty Christof Meile, Renato Castelao and Catherine Edwards as well as Annalisa Bracco and Joe Montoya of Georgia Tech.

For additional information, contact Catherine Edwards at (912) 598-2471 or catherine.edwards@skio.uga.edu.

Scientists use underwater robots to excite students about science

March 3, 2014

Can underwater robots catch the imagination of middle and high school students and spark an interest in science, technology, engineering and mathematics? Researchers and educators from the University of Georgia’s Skidaway Institute of Oceanography and Marine Extension (MAREX) think so. They are creating an education program focused on autonomous underwater vehicles (AUVs), also called gliders or underwater robots.

The program, “Choose Your Own Adventure,” will capitalize on Skidaway Institute’s expertise with AUVs and MAREX’s extensive history of marine education. Skidaway Institute scientist and UGA faculty member Catherine Edwards, and MAREX faculty members Mary Sweeney-Reeves and Mare Timmons will direct the one-year project.

Catherine Edwards (center) demonstrates an AUV to Mary Sweeney-Reeves (left) and Mare Timmons.

Catherine Edwards (center) demonstrates an AUV to Mary Sweeney-Reeves (left) and Mare Timmons.

The AUVs are a cutting-edge technology in marine research. The torpedo-shaped vehicles can be equipped with sensors and recorders to collect observations under all conditions. They are launched into the ocean and move through the water by adjusting their buoyancy and pitch. Because they are highly energy-efficient, gliders can remain on a mission for weeks at a time. Every four to six hours over their mission, they surface, report their data by satellite phone and receive instructions as needed.

Skidaway Institute’s AUV, nicknamed “Modena,” has been used in several recent projects, including “Gliderpalooza,” a simultaneous, cooperative launch of 13 AUVs from different institutions in 2013.

“Gliders are education-friendly, but the existing outreach activities are stale,” said Edwards. “Our program will develop the next generation of AUV outreach programs by combining cutting-edge, interdisciplinary research with educational activities and strong STEM components.”

The proposed work will highlight the problem of working with the strong tides that are characteristic of the Georgia coast. A big issue in operating gliders there is developing a guidance and navigation system that will function well in that kind of environment. The fast-moving Gulf Stream, located roughly 100 miles off the Georgia beaches, also introduces navigation problems.

“Although the AUVs have Global Positioning Systems and can be programmed to travel a set course, tidal and Gulf Stream currents can exceed the glider’s forward speed, which can take the instrument off course and keep us from collecting data where we need it,” Edwards said.

However, on the education side, the predictability of tides makes the proposed program highly intuitive and education-friendly.

“Students who grow up and live on the water already have an intuitive sense of tidal currents,” said Timmons. “Students understand why currents change during certain phases of the moon. This coastal intuition will provide a foundation for us to start an innovative, hands-on approach to STEM activities.”

Activities will depend on grade level so middle school students will have different objectives than those in high school. However, all the activities will address the direction and speed the AUV travels to a destination. The AUV direction and speed will depend on the sea state of coastal waters such as strong currents, storms or high winds.

To address the problem of strong tides, Edwards and a team of Georgia Tech graduate students, co-advised by Fumin Zhang, have developed the Glider Environmental Network Information System, called GENIoS, which optimizes a glider’s path based on data from real-time observations and ocean models. Current doctoral students Dongsik Chang and Sungjin Cho are working to upgrade the system to integrate real-time maps of surface currents measured by Skidaway Institute radar systems.

The education plan is to involve two local educators, April Meeks and Ben Wells, who teach in the Savannah-Chatham County Public School System. Since the activities are multidisciplinary, their expertise in building math curriculum will be valuable as the team integrates concepts of marine science, math and engineering into classroom activities.

“After the initial planning phase, we will be taking the program on the road to Chatham County schools,” said Sweeney-Reeves.

Activities will include student role-playing as an AUV maneuvers through a playing field of vector currents on a large game board. Successful arrival at their destination depends on how the individual pilot responds to currents, wind and density changes in route.

“The real fun will begin when obstacles, like underwater volcanoes, a giant squid or other surprises, cause the pilot to reroute the course of the AUV,” said Sweeney-Reeves.

The activities will allow students to develop analytical skills in a program that will be compliant with Next Generation Science Standards for the 21st Century in the common core state curriculum.

The funded study will include two short glider deployments. A summer 2014 deployment will be used for field-testing, software validation and developing real-world scenarios for the outreach program. A fall deployment will serve as an opportunity for classroom participants to communicate with the glider in real time.

“We hope this one-year program will serve as a springboard for future funding and continued joint outreach by Skidaway Institute and Marine Extension,” said Edwards. “We’d love to develop computer games and apps for tablets and mobile phones that let students fly gliders through even more realistic scenarios based on the measurements we collect in real time.”

The program is being funded through a joint grant from Skidaway Institute, UGA Public Service and Outreach, and the UGA President’s Venture Fund. The UGA President’s Venture Fund is intended to assist with significant funding challenges or opportunities. The fund also supports small programs and projects in amounts typically ranging from $500 to $5,000.

For additional information, contact Catherine Edwards at 912-598-2471 or catherine.edwards@skio.uga.edu; Mary Sweeney-Reeves at 912-598-2350 or msweeney@uga.edu; or Maryellen Timmons at 912-598-2353 or mare@uga.edu.

 

UGA Skidaway Institute participates in Gliderpalooza 2013

September 18, 2013

More than a dozen underwater robotic vehicles called “gliders” will be launched simultaneously this month in a massive, cooperative project involving 10 east coast research institutions, including the University of Georgia Skidaway Institute of Oceanography. Dubbed Gliderpalooza 2013, the fleet of gliders will cruise the waters of the east coast for several weeks, collecting data that could help improve future hurricane forecasts. 

UGA Skidaway Institute scientist Catherine Edwards makes adjustments to the glider “Modena” while R/V Savannah crewman Mickey Baxley assists.

UGA Skidaway Institute scientist Catherine Edwards makes adjustments to the glider “Modena” while R/V Savannah crewman Mickey Baxley assists.

The gliders are torpedo-shaped vehicles, equipped with sensors and recorders to collect observations under all conditions. These autonomous underwater vehicles, or AUVs, move through the water by adjusting their buoyancy and pitch. Because they are highly energy efficient, gliders can remain on a mission for weeks at a time. Every 4 to 6 hours over their mission, they surface, report their data by satellite phone and receive instructions as needed.

According to Skidaway Institute scientist Catherine Edwards, one goal of Gliderpalooza 2013 is to test the feasibility of using a fleet of gliders to work together and to integrate their data—collected in the same time period, but over a wide geographical range.

“Gliders are powerful tools for oceanographers,” Edwards said. “We believe there is great potential to expand the value of them by working together on the deployments and integrating the data each collects.”

Another reason for promoting the use of gliders is their relatively inexpensive cost of operation. Gliders can operate for weeks at a time and in all kinds of weather conditions for a small fraction of the daily coast of an ocean-going research vessel.

“Gliders will never replace ships in oceanography—ship surveys are often the best way to collect data,” Edwards said. “But AUVs require far fewer resources and personnel than shipboard work, and can operate in conditions that would be impossible for traditional ship surveys. For lengthy data-collection missions, a glider can operate for pennies on the dollar by comparison.”

Scientists at Rutgers University are coordinating the project. Computers there will gather the data from the various glider groups, and make it available through a data assembly center for access to and visualization of the data in real time. Glider groups participating in Gliderpalooza will contribute pictures, updates and other notes of interest to scientists and the general public on a blog available at http://maracoos.org/blogs/main/

September was chosen as the month for deployment because many important fish species migrate in that month, and a coordinated experiment can provide a more complete picture of oceanographic conditions and fish populations. September is the most active month for hurricanes, and there is interest in the use of gliders to better understand the effects of major storms on the mixing and transport of heat, nutrients and material.

The Skidaway Institute glider, nicknamed “Modena,” and several others will also be equipped with a special instrument to monitor fish migration. In order to track fish migration, some fisheries biologists tag fish with an acoustic transmitter. The tag-transmitter sends out a sound signal identifying the fish. Typically, receivers on buoys and other stationary platforms monitor these signals. This will be the first time a fleet of moving gliders will be used to monitor fish migration.

Gliderpalooza will also serve as a field test of a new glider navigation system developed by Georgia Tech graduate students, Dongsik Chang, Klimka Szwaykowska and Sungjin Cho, who are supervised by Edwards and Georgia Tech collaborator Fumin Zhang.

Catherine Edwards works on Modena with her team of grad students.

Catherine Edwards works on Modena with her team of grad students.

Gliders can only receive GPS information at the surface. They navigate underwater by dead reckoning, using information on ocean currents from the last leg of their mission. However, the strong tidal currents on the Georgia shelf, combined with the fast-moving Gulf Stream at the shelf edge often exceed a glider’s forward speed. This creates the opportunity for significant navigational errors.

The Glider Environmental Network Information System (GENIoS) is an automated system that optimizes glider navigation based on real time data from ocean models, high frequency radar and measurements from the glider itself. By integrating these data with ocean models, GENIoS provides a more accurate prediction of the currents the glider will navigate through, and chooses the most efficient target waypoints for the glider to aim for as those currents change in space and time.   

During Gliderpalooza, the Skidaway Institute glider will conduct a triangle-shaped mission that includes one leg along the edge of the continental shelf, which also corresponds roughly to the western edge of the Gulf Stream.

“The combination of strong tidal currents and the influence of the Gulf Stream will serve as a strong test of the system,” Edwards said.

The collected glider data will go through NOAA’s National Data Buoy Center to the National Weather Service, the U.S. Navy and other data users for modeling. Data from the glider missions will also be public and available on the Integrated Ocean Observing System Glider Asset Map and at http://www.ndbc.noaa.gov/gliders.pahp.

Funding for Modena’s mission is provided by the UGA Skidaway Institute of Oceanography and the Southeast Coastal Ocean Observing Regional Association.

More information and an ongoing update on the progress of the project are available on the Gliderpalooza 2013 blog at http://maracoos.org/blogs/main/?p=448.

And then a turtle started messin’ with it…

September 21, 2012

Mary Landers from the Savannah Morning News wrote a cute story for the front page of yesterday’s paper about this love sick loggerhead. Click on the picture to read the story.

Glider-robots!

December 19, 2011

We had a real nice story on the front page of this morning’s Savannah Morning News. A big thanks to Mary Landers and her editors!