Archive for the ‘phytoplankton’ Category

UGA Skidaway Institute scientists study microbial chemical warfare

April 18, 2017

In the battlefield of the microbial ocean, scientists have known for some time that certain bacteria can exude chemicals that kill single-cell marine plants, known as phytoplankton. However, the identification of these chemical compounds and the reason why bacteria are producing these lethal compounds has been challenging.

Now, University of Georgia Skidaway Institute of Oceanography scientist Elizabeth Harvey is leading a team of researchers that has received a $904,200 grant from the National Science Foundation to fund a three-year study into the mechanisms that drive bacteria-phytoplankton dynamics.

Researcher Elizabeth Harvey examines a part of her phytoplankton collection.

Understanding these dynamics is important, as phytoplankton are essential contributors to all marine life. Phytoplankton form the base of the marine food chain, and, as plants, produce approximately half of the world’s oxygen.

“Bacteria that interact with phytoplankton and cause their mortality could potentially play a large role in influencing the abundance and distribution of phytoplankton in the world ocean,” Harvey said. “We are interested in understanding this process so we can better predict fisheries health and the general health of the ocean.”

This project is a continuation of research conducted by Harvey and co-team leader Kristen Whalen of Haverford College when they were post-doctoral fellows at Woods Hole Oceanographic Institution. They wanted to understand how one particular bacteria species impacted phytoplankton.

A microscopic view of a population of phytoplankton

“We added the bacteria to the phytoplankton and the phytoplankton died,” Harvey said. “So we became very interested in finding the mechanism that caused that mortality.”

They identified a particular compound, 2-heptyl-4-quinlone or HHQ, that was killing the phytoplankton. HHQ is well known in the medical field where it is associated with a bacterium that can cause lung infections, but it had not been seen before in the ocean. The team will conduct laboratory experiments to determine the environmental factors driving HHQ production in marine bacteria; establish a mechanism of how the chemical kills phytoplankton; and use field-based experiments to understand how HHQ influences the population dynamics of bacteria and phytoplankton.

“This project has the potential to significantly change our understanding of how bacteria and phytoplankton chemically communicate in the ocean.” Harvey said.
The project will also include a strong education component. The researchers will recruit undergraduate students, with an effort to target recruitment of traditionally under-represented groups, to participate in an intense summer learning experience with research, field-based exercises and some classroom work.

“The idea is for the students to return to their home institutions at the end of the summer, but to continue to work with us on this project,” Harvey said. “This will be a unique opportunity to offer students cross disciplinary training in ecology, chemistry, microbiology, physiology and oceanography.”

In addition to Harvey and Whalen, the research team includes David Rowley of the University of Rhode Island.

NOTE:  A complementary video with an interview with Dr. Harvey is available at http://www.skio.uga.edu/news/videos/

 

Diving Deep Into Phytoplankton: How Tiny Ocean Organisms Help You Breathe — An Interview With GPB

March 21, 2017

You can hear Dr. Elizabeth Harvey’s interview with Georgia Public Broadcasting here.

“You may have learned in school that photosynthesis is how plants use sunlight to turn water into hydrogen and carbon dioxide, its food, and oxygen, which it releases into the air for all of us to breathe. But photosynthesis doesn’t just happen on land – it happens in the ocean.

Phytoplankton are tiny, single-celled algae basically, that live in the ocean,” explained Liz Harvey, Assistant Professor of Marine Science at University of Georgia’s Skidaway Institute of Oceanography, which is located on Skidaway Island. “They conduct photosynthesis just like land plants, trees and grass do, and they are prolific. They grow everywhere in the ocean.”

“There’s lots of different types of phytoplankton, they can do lots of different things,” Harvey continued. “But I think if you take one thing home, it’s that phytoplankton are important  as they produce about fifty percent of the oxygen that you breathe. Land plants produce about half and then phytoplankton produce about half. These tiny little microscopic organisms are actually very, very important for helping to sustain life on earth. “

Producing half of earth’s supply of oxygen is only half of this organism’s job.

“Phytoplankton are eaten quite regularly and serve as food for other small organisms, which are then eaten by larger organisms which eventually lead up to fish, whales and sharks and all the really cool things that we think about when we think about the ocean,” Harvey said. “Although I would think phytoplankton are really cool too! So they serve a very important purpose to sustain the health and viability of fisheries. That’s another reason why we’re so concerned about what they’re doing, where they are, what types of phytoplankton are around – because they serve this purpose in supporting the larger fisheries as a whole.”

Tiny but voracious marine organism studied — video

February 8, 2017

Tiny but all-consuming marine organism focus of UGA Skidaway Institute study

February 8, 2017
Marc Frischer

Marc Frischer

Doliolids are tiny marine animals rarely seen by humans outside a research setting, yet they are key players in the marine ecosystem, particularly in the ocean’s highly productive tropical and subtropical continental margins, such as Georgia’s continental shelf. University of Georgia Skidaway Institute of Oceanography scientist Marc Frischer is leading a team of researchers investigating doliolids’ role as a predator in the marine food web.

Doliolids are small, barrel-shaped gelatinous organisms that can grow as large as ten millimeters, or about four tenths of an inch. They are not always present in large numbers, but when they bloom they can restructure the marine food web, consuming virtually all the algae and much of the smaller zooplankton.

A doliolid with a cluster of juvenile doliolids on its tail. Actual size is approximately three millimeters, or one eighth inch.

A doliolid with a cluster of juvenile doliolids on its tail. Actual size is approximately three millimeters, or one eighth inch.

“The goal of this particular study is to find out what the doliolids are eating quantitatively,” Frischer said. “This is so we can understand where they fit in the food web.”

Scientists know from laboratory experiments what doliolids are capable of eating, but they don’t know what they actually do eat in the wild. They are capable of eating organisms as small as bacteria all the way up to much larger organisms.

“What they are eating and how much are they eating from the smorgasbord that is available to them, that is the question,” Frischer said. “We are investigating how much of those different prey types they are really eating out there across the seasons.”

The project involves intensive field work, including 54 days of ship time on board UGA Skidaway Institute’s Research Vessel Savannah. During the cruises they conduct trawls using special plankton nets to collect the doliolids. They also collect water samples to understand the conditions where the doliolids thrive.

Graduate students Lauren Lamboley and Nick Castellane deploy a plankton net from the Research Vessel Savannah.

Graduate students Lauren Lamboley and Nick Castellane deploy a plankton net from the Research Vessel Savannah.

“We take the doliolids and the water samples back to the laboratory, and that is where the magic begins,” Tina Walters, Frischer’s laboratory manager said.

Because the animals are gelatinous and very delicate, the researchers cannot use classical microscopic techniques to dissect the animals and analyze their gut content. Instead they extract DNA from the animals’ gut and use sequence-based information to determine what the doliolid ate.

“We go through a process called quantitative PCR,” Walters said. “So even though we can’t see the prey in a doliolid’s gut, because the prey have unique DNA sequences, we can identify and quantify them using a molecular approach.”

The three-year project is funded by a $725,000 grant from the National Science Foundation and will run until February 2018. Frischer’s collaborator on the project is Deidre Gibson from Hampton University. Gibson received her Ph.D. from the University of Georgia in 2000, and did much of her graduate research at Skidaway Institute with Professor Gustav Paffenhöfer.  In addition to Walters, Savannah State University graduate student Lauren Lamboley is part of the team, along with a number of students at Hampton University. Several undergraduate research interns have also participated in the project, gaining hands-on research experience. Frischer is also working with the Institute for Interdisciplinary STEM Education at Georgia Southern University to engage K-12 teachers by inviting them to participate in the research cruises.

New imaging lab in the news

January 23, 2017

There was a nice article in Saturday’s Savannah Morning News regarding a new imaging lab at UGA Skidaway Institute.

http://savannahnow.com/news/2017-01-20/automated-microscopes-aid-crucial-ocean-work-skidaway

UGA Skidaway Institute develops cutting-edge microbial imaging laboratory

December 7, 2016

A team of researchers from the University of Georgia Skidaway Institute of Oceanography has received a $226,557 grant from the National Science Foundation to acquire state-of-the-art imaging equipment to investigate microorganisms from the tiniest viruses to larger zooplankton. The equipment will be housed in UGA Skidaway Institute’s new Laboratory for Imaging Microbial Ecology, or LIME.

Researcher Elizabeth Harvey leads the research team that also includes UGA Skidaway Institute scientists Julia Diaz, Marc Frischer, James Nelson and James Sanders.

The equipment will improve Skidaway Institute’s capability to conduct field and laboratory experiments by automating many viewing methods.

“Anyone who uses a microscope will tell you that it is both tedious and time consuming,” Harvey said. “This equipment will allow us to enumerate and analyze microbes and other planktonic organisms much faster, and will allow us to do more large-scale projects than we could in the past.”

UGA Skidaway Institute researchers Tina Walters, Marc Frischer and Karrie Bulski practice running zooplankton samples on the FlowCam, a new instrument that is part of LIME.

UGA Skidaway Institute researchers Tina Walters, Marc Frischer and Karrie Bulski practice running zooplankton samples on the FlowCam, a new instrument that is part of LIME.

Much of the equipment will also have imaging capability so researchers will be able to do more detailed measurements on the size and shape of the tiny organisms and how that might relate to the health of an ecosystem.

Marine microbes are an essential component of all marine ecosystems and they play central roles in mediating biogeochemical cycling and food web structure.

“They are the things that drive all other processes in the ocean,” Harvey said. “They play a really important role in the way nutrients, oxygen and carbon are cycled through the ocean. We care a lot about those processes because they impact our climate, fisheries and the ocean’s overall health.”

A sampling of phytoplankton   imaged by the LIME's FlowCam.

A sampling of phytoplankton imaged by the LIME’s FlowCam.

The benefits of LIME will be shared beyond Skidaway Institute’s science team. Harvey envisions it as a regional center for microbial imaging, available to any other researchers who need the capability.

“Anyone is welcome to come here and get trained to use them,” she said. “They just need to contact me and we can make arrangements.”

Some of the equipment is already in place, while other pieces have not been delivered. Harvey anticipates all the equipment being functional by mid-2017.